DOI QR코드

DOI QR Code

Stress relaxation effect on uniaxial compressive strength values of a silt type soil

  • Eren Komurlu (Department of Civil Engineering, Giresun University)
  • 투고 : 2021.09.16
  • 심사 : 2023.02.09
  • 발행 : 2023.03.10

초록

In this study, stress relaxation tests were carried out by keeping silt type soil specimens under different strain levels. Decreases in the stress values with time data was collected to better understand the effect of the strain level on the relaxation properties of soil specimens. In addition, the stress relaxation effect on the uniaxial compressive strength (UCS) values of the specimens was investigated with a series of tests. According to the results obtained from this study, the UCS values of the silt specimens significantly vary as a result of the stress relaxation effect. The UCS values were determined to increase with an increase of relaxation strain level to a threshold value. On the other hand, the UCS values were found to be affected adversely in case of high stress levels at the initiation of the relaxation, which are close to the peak level.

키워드

과제정보

This study has been supported by FEN-BAP-A-150219-27 coded scientific research project of Giresun University. The author expresses sincere thanks for the support by the Giresun University Scientific Research Projects Coordination Unit.

참고문헌

  1. ASTM International (2010), "ASTM D4318-10: Standard test methods for liquid limit, plastic limit, and plasticity index of soils", 2010 Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
  2. Augustesen, A., Liingaard, M. and Lade, P.V. (2004), "Evaluation of time-dependent behavior of soils", Int. J. Geomech., 4(3), 137-156. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(137).
  3. Azarafza, M., Nanehkaran, Y.A., Akgun, H. and Mao, Y. (2021), "Application of an image processing-based algorithm for riverside granular sediment gradation distribution analysis", Adv. Mater. Res., 10(3), 229-244. https://doi.org/10.12989/amr.2021.10.3.229.
  4. Bagheri, M., Rezania, M. and Nezhad, M.M. (2019), "Rate dependency and stress relaxation of unsaturated clays", Int. J. Geomech., 19(12), 04019128. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001507.
  5. Bock, R.G., Puri, V.M. and Manbeck, H.B. (1991), "Triaxial test sample size effect on stress relaxation of wheat en masse", Trans. ASAE, 34(3), 0966-0971. https://doi.org/10.13031/2013.31757.
  6. Chegenizadeh, A., Keramatikerman, M. and Nikraz, H. (2020), "Effect of loading strain rate on creep and stress-relaxation characteristics of sandy silt", Result. Eng., 7, 100143. https://doi.org/10.1016/j.rineng.2020.100143.
  7. Dijkstra, J., Ando, E. and Dano, C. (2019), "Grain kinematics during stress relaxation in sand: not a problem for X-ray imaging", E3S Web of Conferences, 92, 01001. https://doi.org/10.1051/e3sconf/20199201001.
  8. Dob, H., Messast, S., Boulon, M. and Flavigny, E. (2016), "Treatment of the high number of cycles as a pseudo-cyclic creep by analogy with the soft soil creep model", Geotech. Geol. Eng., 34, 1985-1993. https://doi.org/10.1007/s10706-016-0078-7.
  9. Hanley, K.J., O'Sullivan, C., Wadee, M.A. and Huang, X. (2015), "Use of elastic stability analysis to explain the stress-dependent nature of soil strength", R. Soc. Open Sci., 2(4), 150038. https://doi.org/10.1098/rsos.150038.
  10. Jun, S.H., Lee, J.H., Park, B.S. and Kwon, H.J. (2021), "Design charts for consolidation settlement of marine clays using finite strain consolidation theory", Geomech. Eng., 24(3), 295-305. https://doi.org/10.12989/gae.2021.24.3.295.
  11. Kamao, S. (2016), "Creep And Relaxation Behavior of Highly Organic Soil", Int. J. Geomate, 11(25), 2506-2511. https://doi.org/10.21660/2016.25.5301.
  12. Komurlu, E. (2021). "An experimental study on stress relaxation of a silt type soil", Yerbilimleri, 42, 70-84. https://doi.org/10.17824/yerbilimleri.774533.
  13. Komurlu, E. and Celik, A.G. (2022). "An experimental study on stress relaxation behaviour of cement stabilized sands", J. Geoeng., 17, 189-194. https://doi.org/10.6310/jog.202212_17(4).2.
  14. Komurlu, E. and Kesimal, A. (2015a). "Experimental study on sulfide-rich mine tailings usage for short-term support purpose", Geomech. Eng., 9(2), 195-205. https://doi.org/10.12989/gae.2015.9.2.195.
  15. Komurlu, E. and Kesimal, A. (2015b). "Experimental study of polyurethane foam reinforced soil used as a rock-like material", J. Rock. Mech. Geotech. Eng., 7(5), 566-572. https://doi.org/10.1016/j.jrmge.2015.05.004.
  16. Kutergin, V.N., Kal'bergenov, R.G., Karpenko, F.S., Leonov, A.R. and Merzlyakov, V.P. (2013), "Determination of rheological properties of clayey soils by the relaxation method", Soil. Mech. Found. Eng., 50, 1-6. https://doi.org/10.1007/s11204-013-9201-4.
  17. Kwok, C.Y. and Bolton, M.D. (2013), "DEM simulations of soil creep due to particle crushing", Geotechnique, 63(16), 1365-1376. https://doi.org/10.1680/geot.11.P.089.
  18. Lade, P.V. and Karimpour, H. (2016), "Stress drop effects in time dependent behavior of quartz sand", Int. J. Solids Struct., 87(1), 167-182. https://doi.org/10.1016/j.ijsolstr.2016.02.015.
  19. Lade, P.V. and Karimpour, H., (2015), "Stress relaxation behavior in Virginia Beach sand", Can. Geotech. J., 52(7), 813-835. https://doi.org/10.1139/cgj-2013-0463.
  20. Lade, P.V., Nam, J. and Liggio, C.D.J. (2010), "Effects of particle crushing in stress drop-relaxation experiments on crushed coral sand", J. Geotech. Geoenviron., 136(3), 500-509. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000212.
  21. Levin, F., Vogt, S. and Cudmani, R. (2019), "Time-dependent behaviour of sand with different fine contents under oedometric loading", Can. Geotech. J., 56(1), 102-115. https://doi.org/10.1139/cgj-2017-0565.
  22. Li, G., Ni, C., Pei, H., Wan-ming, G. and Ng, C.W.W. (2013), "Stress relaxation of grouted entirely large diameter B-GFRP soil nail", China Ocean Eng., 27, 495-508. https://doi.org/10.1007/s13344-013-0042-8.
  23. Liingaard, M., Augustesen, A. and Lade, P.V. (2004), "Characterization of Models for Time-Dependent Behavior of Soils", Int. J. Geomech., 4(3), 157-177. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(157).
  24. Miksic, A. and Alava, M.C. (2013), "Evolution of grain contacts in a granular sample under creep and stress relaxation", Phys. Rev. E., 88, 032207. https://doi.org/10.1103/PhysRevE.88.032207.
  25. Paul, M., Bakshi, K. and Sahu, R.B. (2021), "An analytical model for radial consolidation prediction under cyclic loading", Geomech. Eng., 26(4), 333-343. https://doi.org/10.12989/gae.2021.26.4.333.
  26. Sabir, M.A., Umar, M., Farooq, M. and Faridullah, F. (2016), "Computing soil creep velocity using dendrochronology", Bull. Eng. Geol. Environ., 75, 1761-1768. https://doi.org/10.1007/s10064-015-0838-2.
  27. Sanchez-Giron, V., Andreu, E. and Hernanz, J.L. (2001), "Stress relaxation of five different soil samples when uniaxially compacted at different water contents", Soil Till. Res., 62(3-4), 85-99. https://doi.org/10.1016/S0167-1987(01)00213-6.
  28. Sheahan, T., Ladd, C. and Germaine, J. (1994), "Time-dependent triaxial relaxation behavior of a resedimented clay", Geotech. Test. J., 17(4), 444-452. https://doi.org/10.1520/GTJ10305J.
  29. Staszewska, K. and Cudny, M. (2020), "Modelling the time-dependent behaviour of soft soils", Stud. Geotech. Mech., 42(2), 97-110. https://doi.org/10.2478/sgem-2019-0034.
  30. Thomas, G. and Rangaswamy, K. (2020) "Strengthening of cement blended soft clay with nano-silica particles", Geomech. Eng., 20(6), 505-516. https://doi.org/10.12989/gae.2020.20.6.505.
  31. Tong, F. and Yin, J.H. (2013), "Experimental and constitutive modeling of relaxation behaviors of three clayey soils", J. Geotech. Geoenviron., 139(11), 1973-1981. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000926.
  32. Tran, T.T.T., Hazarika. H., Indrawan, I.G.B. and Karnawati, D. (2018), "Prediction of time to soil failure based on creep strength reduction approach", Geotech. Geol. Eng., 36, 2749-2760. https://doi.org/10.1007/s10706-018-0496-9.
  33. Wang, J. and Xia, Z. (2021) "DEM study of creep and stress relaxation behaviors of dense sand", Comput. Geotech., 134, 104142. https://doi.org/10.1016/j.compgeo.2021.104142.
  34. Wang, S., Zhan, Q., Wang, L., Guo, F., Liu, T. and Pan, Y. (2021), "Unsaturated creep behaviors and creep model of slip‑surface soil of a landslide in Three Gorges Reservoir area, China", Bull. Eng. Geol. Environ., 80, 5423-5435. https://doi.org/10.1007/s10064-021-02303-5.
  35. Wang, Y.F., Zhou, Z.G. and Cai, Z.Y. (2014), "Studies about creep characteristic of silty clay on triaxial drained creep test", Appl. Mech. Mater., 580-583, 355-358. https://doi.org/10.4028/www.scientific.net/amm.580-583.355.
  36. Xin, Z.H., Moon, J.H., Kim, L.S., Kim K.B. and Kim, Y.U. (2019), "Effect of arbitrarily manipulated gap-graded granular particles on reinforcing foundation soil", Geomech. Eng., 17(5), 439-444. https://doi.org/10.12989/gae.2019.17.5.439.
  37. Xu, M., Hong, J. and Song, E. (2018), "DEM study on the macro- and micro-responses of granular materials subjected to creep and stress relaxation", Comput. Geotech., 102, 111-124. https://doi.org/10.1016/j.compgeo.2018.06.009
  38. Yin, Z.Y., Zhu, Q.Y., Yin, J.H. and Ni, Q. (2014), "Stress relaxation coefficient and formulation for soft soils", Geotech. Lett., 4(1), 45-51. https://doi.org/10.1680/geolett.13.00070.
  39. Zhou, C., Xu, C., Karakus, M. and Shen, J. (2018), "A systematic approach to the calibration of micro-parameters for the flat-jointed bonded particle model", Geomech. Eng., 16(5), 471-482. https://doi.org/10.12989/gae.2018.16.5.471.