References
- Abbas, I.A. (2014a), "A GN model based upon two-temperature generalized thermoelastic theory in an unbounded medium with a spherical cavity", Appl. Math. Comput., 245, 108-115. https://doi.org/10.1016/j.amc.2014.07.059.
- Abbas, I.A. (2014b), "Fractional order GN model on thermoelastic interaction in an infinite fibrereinforced anisotropic plate containing a circular hole", J. Comput. Theor. Nanosci., 11(2), 380-384. https://doi.org/10.1166/jctn.2014.3363.
- Abbas, I.A., Abdalla, A.N., Alzahrani, F.S. and Spagnuolo, M. (2016), "Wave propagation in a generalized thermoelastic plate using eigenvalue approach", J. Therm. Stress., 39(11), 1367-1377. https://doi.org/10.1080/01495739.2016.1218229.
- Abdou, M.A.A., Othman, M.I.A., Tantawi, R.S. and Mansour, N.T. (2018), "Effect of rotation and gravity on generalized thermo- elastic medium with double porosity under L-S theory", J. Mater. Sci. and Nanotech., 6(3), 204-218.
- Abdou, M.A.A., Othman, M.I.A., Tantawi, R.S. and Mansour, N.T. (2020a), "Exact solutions of generalized thermoelastic medium with double porosity under L-S theory", Ind. J. Phys., 94(5), 725-736. https://doi.org/10.1007/s12648-019-01505-8.
- Abdou, M.A.A., Othman, M.I.A., Tantawi, R.S. and Mansour, N.T. (2020b), "Effect of magnetic field on generalized thermos elastic medium with double porosity structure under L-S theory", Ind. J. Phys., 94(12), 1993-2004. https://doi.org/10.1007/s12648-019-01648-8.
- Ainouz, A. (2011), "Homogenized double porosity models for poro-elastic media with interfacial flow barrier", Math. Bohem., 136(4), 357-365. https://doi.org/10.21136/mb.2011.141695
- Anya, A.I. and Khan, A. (2019), "Reflection and propagation of plane waves at free surfaces of a rotating micropolar fiber-reinforced medium with voids", Geomech. Eng., 18(6), 605-614. https://doi.org/10.12989/gae.2019.18.6.605.
- Abo-Dahab, S.M. and Abbas, I.A. (2011), "LS model on thermal shock problem of generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity", Appl. Math. Model., 35(8), 3759-3768. https://doi.org/10.1016/j.apm.2011.02.028.
- Barrenblatt, G.I., Zheltov, I.P. and Kockina, I.N. (1960), "Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata)", (English translation), Prikl Mat Mekh, 24, 1286-1303. https://doi.org/10.1016/0021-8928(60)90107-6
- Barenblatt, G.I. and Zheltov, I.P. (1960), "On the basic equations of seepage of homogeneous liquids in fissured rock", (English translation), Akad Nauk SSSR, 132, 545-548.
- Ezzat, M.A. and Fayik, M.A. (2011), "Fractional order theory of thermoelastic diffusion", J. Therm. Stress., 34(8), 851-872. https://doi.org/10.1080/01495739.2011.586274.
- Fahmy, M.A. (2022a), "3D boundary element model for ultrasonic wave propagation fractional order boundary value problems of functionally graded anisotropic fiber-reinforced plates", Fractal Fract, 6(5), Art. No. 247. https://doi.org/10.3390/fractalfract6050247.
- Fahmy, M.A. (2022b), "Boundary element modeling of fractional nonlinear generalized photo-thermal stress wave propagation problems in FG anisotropic smart semiconductors", Eng. Anal. Bound. Elem., 134, 665-379. https://doi.org/10.1016/j.enganabound.2021.11.009.
- Fahmy, M.A. and Alsulami, M.O. (2022), "Boundary element and sensitivity analysis of anisotropic thermoelastic metal and alloy discs with holes", Materials, 15(5), 1828. https://doi.org/10.3390/ma15051828.
- Fahmy, M.A. and Almehmadi, M.M. (2022), "Boundary element analysis of rotating functionally graded anisotropic fiber-reinforced magneto-thermoelastic composites", Open Eng., 12, 313-322. https://doi.org/10.1515/eng-2022-0036.
- Fahmy, M.A., Almehmadi, M.M., Al Subhi, F.M. and Sohail, A. (2022), "Fractional boundary element solution of three-temperature thermoelectric problems", Scientific Reports 12, Art. No.m 6760. https://doi.org/10.1038/s41598-022-10639-5.
- Iesan, D. and Quintanilla, R. (2014), "On a theory of thermoelastic materials with a double porosity structure on a theory of thermoelastic materials with a double porosity structure", J. Therm. Stress., 37(9), 1017-1036. https://doi.org/10.1080/01495739.2014.914776.
- Khalili, N. and Valliappan, S. (1996), "Unified theory of flow and deformation in double porous media", Eur. J. Mech., 15(2), 321-336.
- Khalili, N. (2003), "Coupling effects in double porosity media with deformable matrix", Geophys. Res. Lett., 30(22), 2153-2155. https://doi.org/10.1029/2003GL018544
- Khalili, N. and Selvadurai, A.P.S. (2003), "A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity", Geophys. Res. Lett., 30(24), 2268-2272. https://doi.org/10.1029/2003GL018838.
- Kumar, R., Gupta, V. and Abbas, I.A. (2013), "Plane deformation due to thermal source in fractional order thermoelastic media", J. Comput. Theor. Nanosci., 10(10), 2520-2525. https://doi.org/10.1166/jctn.2013.3241.
- Lata, P. and Kaur, H. (2019), "Deformation in transversely isotropic thermoelastic medium using new couple stress theory in frequency domain", Geomech. Eng., 19(5), 369-381. https://doi.org/10.12989/gae.2019.19.5.369.
- Lata, P. and Kaur, H. (2020), "Effect of two temperature on isotropic modified couple stress thermoelastic medium with and without energy dissipation", Geomech. Eng., 21(5), 461-469. https://doi.org/10.12989/gae.2020.21.5.461.
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Sol., 15, 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
- Marin, M., Hobiny, A. and Abbas, I.A. (2021), "The effects of fractional time derivatives in poro-thermoelastic materials using finite element method", Mathematics, 9(14) Art. No. 1606. https://doi.org/10.3390/math9141606.
- Masters, I., Pao, W.K.S. and Lewis, R.W. (2000), "Coupling temperature to a double porosity model of deformable porous media", Int. J. Numer. Method. Eng., 49, 421-438. https://doi.org/10.1002/1097-0207(20000930)49:3<421::AIDNME48>3.0.CO;2-6.
- Mohamed, R.A., Abbas, I.A. and Abo-Dahab, S.M. (2008), "Finite element analysis of hydro-magnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction", Commun. Nonlinear Sci. Numer. Simul., 14(4), 1385-1395. https://doi.org/10.1016/j.cnsns.2008.04.006.
- Othman, M.I.A., Atwa, S.Y. and Farouk, R.M. (2009), "The effect of diffusion on two-dimensional problem of generalized thermoelasticity with Green-Naghdi theory", Int. Commun. Heat Mass., 36(8), 857-864. https://doi.org/10.1016/j.icheatmasstransfer.2009.04.014.
- Othman, M.I.A., Sarkar, N. and Atwa, S.Y. (2013), "Effect of fractional parameter on plane waves of generalized magneto-thermoelastic diffusion with reference temperature dependent elastic medium", Comput. Math. Appl., 65(7), 1103-1118. https://doi.org/10.1016/j.camwa.2013.01.047.
- Othman, M.I.A., Fekry, M. and Marin, M. (2020), "Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating", Struct. Eng. Mech., 73(6), 621-629. https://doi.org/10.12989/sem.2020.73.6.621.
- Straughan, B. (2013), "Stability and uniqueness in double porosity elasticity", Int. J. Eng. Sci., 65, 1-8. https://doi.org/10.1016/j.ijengsci.2013.01.001.
- Svanadze, M. (2010), "Dynamical problems of the theory of elasticity for solids with double porosity", Proc. Appl. Math. Mech., 10(1), 309-310. https://doi.org/10.1002/pamm.201010147.
- Zenkour, A.M. and Abbas, I.A. (2013), "Magneto-thermoelastic response of an infinite functionally graded cylinder using the finite element method", JVC/J Vib Control., 20(12), 1907-1919. https://doi.org/10.1177/1077546313480541.