DOI QR코드

DOI QR Code

Effect of relaxation time on generalized double porosity thermoelastic medium with diffusion

  • Mohamed I.A. Othman (Department of Mathematics, Faculty of Science, Zagazig University) ;
  • Nehal T. Mansour (Basic Sciences Department, Al Safwa High Institute of Engineering)
  • Received : 2021.12.07
  • Accepted : 2023.02.06
  • Published : 2023.03.10

Abstract

This paper studies the effect of the relaxation time on a two-dimensional thermoelastic medium which has a doubly porous structure in the presence of diffusion and gravity. The normal mode analysis is used to obtain the analytic expressions of the physical quantities, which we take the solution form in the exponential image. We have discussed a homogeneous thermoelastic half-space with double porosity with the effect of diffusion and gravity. The equations of generalized thermoelastic material with double porosity structure with one relaxation time have been developed. Moreover, the expressions of many physical quantities are explained. The general solutions, under specific boundary conditions of the problem, were found in some detail. In addition, numerical results are computed.

Keywords

References

  1. Abbas, I.A. (2014a), "A GN model based upon two-temperature generalized thermoelastic theory in an unbounded medium with a spherical cavity", Appl. Math. Comput., 245, 108-115. https://doi.org/10.1016/j.amc.2014.07.059.
  2. Abbas, I.A. (2014b), "Fractional order GN model on thermoelastic interaction in an infinite fibrereinforced anisotropic plate containing a circular hole", J. Comput. Theor. Nanosci., 11(2), 380-384. https://doi.org/10.1166/jctn.2014.3363.
  3. Abbas, I.A., Abdalla, A.N., Alzahrani, F.S. and Spagnuolo, M. (2016), "Wave propagation in a generalized thermoelastic plate using eigenvalue approach", J. Therm. Stress., 39(11), 1367-1377. https://doi.org/10.1080/01495739.2016.1218229.
  4. Abdou, M.A.A., Othman, M.I.A., Tantawi, R.S. and Mansour, N.T. (2018), "Effect of rotation and gravity on generalized thermo- elastic medium with double porosity under L-S theory", J. Mater. Sci. and Nanotech., 6(3), 204-218.
  5. Abdou, M.A.A., Othman, M.I.A., Tantawi, R.S. and Mansour, N.T. (2020a), "Exact solutions of generalized thermoelastic medium with double porosity under L-S theory", Ind. J. Phys., 94(5), 725-736. https://doi.org/10.1007/s12648-019-01505-8.
  6. Abdou, M.A.A., Othman, M.I.A., Tantawi, R.S. and Mansour, N.T. (2020b), "Effect of magnetic field on generalized thermos elastic medium with double porosity structure under L-S theory", Ind. J. Phys., 94(12), 1993-2004. https://doi.org/10.1007/s12648-019-01648-8.
  7. Ainouz, A. (2011), "Homogenized double porosity models for poro-elastic media with interfacial flow barrier", Math. Bohem., 136(4), 357-365. https://doi.org/10.21136/mb.2011.141695
  8. Anya, A.I. and Khan, A. (2019), "Reflection and propagation of plane waves at free surfaces of a rotating micropolar fiber-reinforced medium with voids", Geomech. Eng., 18(6), 605-614. https://doi.org/10.12989/gae.2019.18.6.605.
  9. Abo-Dahab, S.M. and Abbas, I.A. (2011), "LS model on thermal shock problem of generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity", Appl. Math. Model., 35(8), 3759-3768. https://doi.org/10.1016/j.apm.2011.02.028.
  10. Barrenblatt, G.I., Zheltov, I.P. and Kockina, I.N. (1960), "Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata)", (English translation), Prikl Mat Mekh, 24, 1286-1303. https://doi.org/10.1016/0021-8928(60)90107-6
  11. Barenblatt, G.I. and Zheltov, I.P. (1960), "On the basic equations of seepage of homogeneous liquids in fissured rock", (English translation), Akad Nauk SSSR, 132, 545-548.
  12. Ezzat, M.A. and Fayik, M.A. (2011), "Fractional order theory of thermoelastic diffusion", J. Therm. Stress., 34(8), 851-872. https://doi.org/10.1080/01495739.2011.586274.
  13. Fahmy, M.A. (2022a), "3D boundary element model for ultrasonic wave propagation fractional order boundary value problems of functionally graded anisotropic fiber-reinforced plates", Fractal Fract, 6(5), Art. No. 247. https://doi.org/10.3390/fractalfract6050247.
  14. Fahmy, M.A. (2022b), "Boundary element modeling of fractional nonlinear generalized photo-thermal stress wave propagation problems in FG anisotropic smart semiconductors", Eng. Anal. Bound. Elem., 134, 665-379. https://doi.org/10.1016/j.enganabound.2021.11.009.
  15. Fahmy, M.A. and Alsulami, M.O. (2022), "Boundary element and sensitivity analysis of anisotropic thermoelastic metal and alloy discs with holes", Materials, 15(5), 1828. https://doi.org/10.3390/ma15051828.
  16. Fahmy, M.A. and Almehmadi, M.M. (2022), "Boundary element analysis of rotating functionally graded anisotropic fiber-reinforced magneto-thermoelastic composites", Open Eng., 12, 313-322. https://doi.org/10.1515/eng-2022-0036.
  17. Fahmy, M.A., Almehmadi, M.M., Al Subhi, F.M. and Sohail, A. (2022), "Fractional boundary element solution of three-temperature thermoelectric problems", Scientific Reports 12, Art. No.m 6760. https://doi.org/10.1038/s41598-022-10639-5.
  18. Iesan, D. and Quintanilla, R. (2014), "On a theory of thermoelastic materials with a double porosity structure on a theory of thermoelastic materials with a double porosity structure", J. Therm. Stress., 37(9), 1017-1036. https://doi.org/10.1080/01495739.2014.914776.
  19. Khalili, N. and Valliappan, S. (1996), "Unified theory of flow and deformation in double porous media", Eur. J. Mech., 15(2), 321-336.
  20. Khalili, N. (2003), "Coupling effects in double porosity media with deformable matrix", Geophys. Res. Lett., 30(22), 2153-2155. https://doi.org/10.1029/2003GL018544
  21. Khalili, N. and Selvadurai, A.P.S. (2003), "A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity", Geophys. Res. Lett., 30(24), 2268-2272. https://doi.org/10.1029/2003GL018838.
  22. Kumar, R., Gupta, V. and Abbas, I.A. (2013), "Plane deformation due to thermal source in fractional order thermoelastic media", J. Comput. Theor. Nanosci., 10(10), 2520-2525. https://doi.org/10.1166/jctn.2013.3241.
  23. Lata, P. and Kaur, H. (2019), "Deformation in transversely isotropic thermoelastic medium using new couple stress theory in frequency domain", Geomech. Eng., 19(5), 369-381. https://doi.org/10.12989/gae.2019.19.5.369.
  24. Lata, P. and Kaur, H. (2020), "Effect of two temperature on isotropic modified couple stress thermoelastic medium with and without energy dissipation", Geomech. Eng., 21(5), 461-469. https://doi.org/10.12989/gae.2020.21.5.461.
  25. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Sol., 15, 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
  26. Marin, M., Hobiny, A. and Abbas, I.A. (2021), "The effects of fractional time derivatives in poro-thermoelastic materials using finite element method", Mathematics, 9(14) Art. No. 1606. https://doi.org/10.3390/math9141606.
  27. Masters, I., Pao, W.K.S. and Lewis, R.W. (2000), "Coupling temperature to a double porosity model of deformable porous media", Int. J. Numer. Method. Eng., 49, 421-438. https://doi.org/10.1002/1097-0207(20000930)49:3<421::AIDNME48>3.0.CO;2-6.
  28. Mohamed, R.A., Abbas, I.A. and Abo-Dahab, S.M. (2008), "Finite element analysis of hydro-magnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction", Commun. Nonlinear Sci. Numer. Simul., 14(4), 1385-1395. https://doi.org/10.1016/j.cnsns.2008.04.006.
  29. Othman, M.I.A., Atwa, S.Y. and Farouk, R.M. (2009), "The effect of diffusion on two-dimensional problem of generalized thermoelasticity with Green-Naghdi theory", Int. Commun. Heat Mass., 36(8), 857-864. https://doi.org/10.1016/j.icheatmasstransfer.2009.04.014.
  30. Othman, M.I.A., Sarkar, N. and Atwa, S.Y. (2013), "Effect of fractional parameter on plane waves of generalized magneto-thermoelastic diffusion with reference temperature dependent elastic medium", Comput. Math. Appl., 65(7), 1103-1118. https://doi.org/10.1016/j.camwa.2013.01.047.
  31. Othman, M.I.A., Fekry, M. and Marin, M. (2020), "Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating", Struct. Eng. Mech., 73(6), 621-629. https://doi.org/10.12989/sem.2020.73.6.621.
  32. Straughan, B. (2013), "Stability and uniqueness in double porosity elasticity", Int. J. Eng. Sci., 65, 1-8. https://doi.org/10.1016/j.ijengsci.2013.01.001.
  33. Svanadze, M. (2010), "Dynamical problems of the theory of elasticity for solids with double porosity", Proc. Appl. Math. Mech., 10(1), 309-310. https://doi.org/10.1002/pamm.201010147.
  34. Zenkour, A.M. and Abbas, I.A. (2013), "Magneto-thermoelastic response of an infinite functionally graded cylinder using the finite element method", JVC/J Vib Control., 20(12), 1907-1919. https://doi.org/10.1177/1077546313480541.