DOI QR코드

DOI QR Code

The role of nanotechnology in reducing the impact on the ball and increasing the speed of its movement

  • Yongyong Wang (Ministry of Sports, Chongqing Jiaotong University) ;
  • Qixia Jia (Ministry of Sports, Chongqing Jiaotong University) ;
  • Tingting Deng (Second Foreign Language School of Sichuan Foreign Studies University)
  • Received : 2022.03.02
  • Accepted : 2023.02.06
  • Published : 2023.03.10

Abstract

Materials produced with the help of new technology are used in the design of materials used in all science and engineering departments today. A sports engineering and sports equipment department is one of these departments. The use of nanotechnology in sports equipment is one of the most popular uses of this technology today. Nanomaterials have been used in sports equipment for many years, and reputable companies have benefited. Athletes' equipment allows them to display their skills to the fullest extent. It has always been a dream of professional athletes and their coaches to have unique equipment. As a result, engineers have spent all their time and effort solving this problem. Science and engineering can do various things to meet the needs of all sports levels, including specific and detailed designs, the use of appropriate materials, and standardization tests on equipment. However, these aspects must remain aligned with the latest technologies as they develop, just as with other sciences. These technologies, especially nanotechnology, are essential to sports equipment and devices developed today by sports engineers. This article examines the balls that use nanotechnology and can also improve the athlete's performance by using this technology in a specific structure. Using nanotechnology to make nanocomposite poly-hope balls, which makes them lighter and more acceptable, reduces the impact on the ball and increases its movement speed.

Keywords

References

  1. Adamian, A., Safari, K.H., Sheikholeslami, M., Habibi, M., Al-Furjan, M. and Chen, G. (2020), "Critical temperature and frequency characteristics of GPLs-reinforced composite doubly curved panel", Appl. Sci., 10(9), 3251. https://doi.org/10.3390/app10093251.
  2. Agag, T., Koga, T. and Takeichi, T. (2001), "Studies on thermal and mechanical properties of polyimide-clay nanocomposites", Polymer, 42(8), 3399-3408. https://doi.org/10.1016/S0032-3861(00)00824-7.
  3. Al-Furjan, M., Dehini, R., Khorami, M., Habibi, M. and Won Jung, D. (2020a), "On the dynamics of the ultra-fast rotating cantilever orthotropic piezoelectric nanodisk based on nonlocal strain gradient theory", Compos. Struct., 112990. https://doi.org/10.1016/j.compstruct.2020.112990.
  4. Al-Furjan, M., Fereidouni, M., Habibi, M., Abd Ali, R., Ni, J. and Safarpour, M. (2020b), "Influence of in-plane loading on the vibrations of the fully symmetric mechanical systems via dynamic simulation and generalized differential quadrature framework", Eng. with Comput., 1-23. https://doi.org/10.1007/s00366-020-01177-7.
  5. Al-Furjan, M., Fereidouni, M., Sedghiyan, D., Habibi, M. and Won Jung, D. (2020c), "Three-dimensional frequency response of the CNT-Carbon-Fiber reinforced laminated circular/annular plates under initially stresses", Compos. Struct., 113146. https://doi.org/10.1016/j.compstruct.2020.113146.
  6. Al-Furjan, M., Habibi, M., won Jung, D. and Safarpour, H. (2020d), "Vibrational characteristics of a higher-order laminated composite viscoelastic annular microplate via modified couple stress theory", Compos. Struct., 113152. https://doi.org/10.1016/j.compstruct.2020.113152.
  7. Al-Furjan, M., Moghadam, S.A., Dehini, R., Shan, L., Habibi, M. and Safarpour, H. (2020e), "Vibration control of a smart shell reinforced by graphene nanoplatelets under external load: Seminumerical and finite element modeling", Thin-Wall. Struct., 107242. https://doi.org/10.1016/j.tws.2020.107242.
  8. Al-Furjan, M., Oyarhossein, M.A., Habibi, M., Safarpour, H. and Jung, D.W. (2020f), "Frequency and critical angular velocity characteristics of rotary laminated cantilever microdisk via two-dimensional analysis", Thin-Wall. Struct., 157, 107111. https://doi.org/10.1016/j.tws.2020.107111.
  9. Atkuri, H., Cook, G., Evans, D.R., Cheon, C.I., Glushchenko, A., Reshetnyak, V., Reznikov, Y., West, J. and Zhang, K. (2009), "Preparation of ferroelectric nanoparticles for their use in liquid crystalline colloids", J. Opt. A: Pure Appl. Opt., 11(2), 024006. https://doi.org/10.1088/1464-4258/11/2/024006.
  10. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2016), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A. 123(1), 104. https://doi.org/10.1007/s00339-016-0712-5.
  11. Azimi, M., Mirjavadi, S.S., Shafiei, N., Hamouda, A.M.S. and Davari, E. (2018), "Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution", Mech. Adv. Mater. Struct., 25(6), 467-480. https://doi.org/10.1080/15376494.2017.1285455.
  12. Bai, Y., Alzahrani, B., Baharom, S. and Habibi, M. (2020), "Seminumerical simulation for vibrational responses of the viscoelastic imperfect annular system with honeycomb core under residual pressure", Eng. with Comput., 1-26. https://doi.org/10.1007/s00366-020-01191-9.
  13. Bechthold, M. and Weaver, J.C. (2017), "Materials science and architecture", Nature Rev. Mater., 2(12), 17082. https://doi.org/10.1038/natrevmats.2017.82.
  14. Cai, W. and Chen, X. (2007), "Nanoplatforms for Targeted Molecular Imaging in Living Subjects", Small., 3(11), 1840-1854. https://doi.org/10.1002/smll.200700351.
  15. Cao, C., Wang, J., Kwok, D., Cui, F., Zhang, Z., Zhao, D., Li, M.J. and Zou, Q. (2022), "webTWAS: a resource for disease candidate susceptibility genes identified by transcriptome-wide association study", Nucleic Acids Res., 50(1), 1123-1130. https://doi.org/10.1093/nar/gkab957.
  16. Chang, Y., Niu, B., Wang, H., Zhang, L., Ahmad, A.M. and Alassafi, M.O. (2022), "Adaptive tracking control for nonlinear system in pure-feedback form with prescribed performance and unknown hysteresis", IMA J. Math. Control Inform., 39(3), 892-911. https://doi.org/10.1093/imamci/dnac015.
  17. Chen, P., Pei, J., Lu, W. and Li, M. (2022), "A deep reinforcement learning based method for real-time path planning and dynamic obstacle avoidance", Neurocomput., 497 64-75. https://doi.org/10.1016/j.neucom.2022.05.006.
  18. Cheshmeh, E., Karbon, M., Eyvazian, A., Jung, D.W., Habibi, M. and Safarpour, M. (2020), "Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory", Mech. Based Des. Struct. Mach., 1-24. https://doi.org/10.1080/15397734.2020.1744005.
  19. Cibo, M., Sator, A., Kazlagic, A. and Omanovic-Miklicanin, E. (2020). "Application and Impact of Nanotechnology in Sport", Proceedings of the 30th Scientific-Experts Conference of Agriculture and Food Industry, Cham..
  20. Dai, Z., Jiang, Z., Zhang, L. and Habibi, M. (2021a), "Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell", Adv. Nano Res., 10(2), 175-189. https://doi.org/10.12989/anr.2021.10.2.175.
  21. Dai, Z., Zhang, L., Bolandi, S.Y. and Habibi, M. (2021b), "On the vibrations of the non-polynomial viscoelastic composite opentype shell under residual stresses", Compos. Struct., 113599. https://doi.org/10.1016/j.compstruct.2021.113599.
  22. Dang, Y., Zhang, Y., Fan, L., Chen, H. and Roco, M.C. (2010), "Trends in worldwide nanotechnology patent applications: 1991 to 2008", J. Nanoparticle Res., 12(3), 687-706. https://doi.org/10.1007/s11051-009-9831-7.
  23. Davis, D., Guo, X., Musavi, L., Lin, C.S., Chen, S.H. and Wu, V.C.H. (2013), "Gold nanoparticle-modified carbon electrode biosensor for the detection of listeria monocytogenes", Ind. Biotechnol., 9(1), 31-36. https://doi.org/10.1089/ind.2012.0033.
  24. De Volder, M.F.L., Tawfick, S.H., Baughman, R.H. and Hart, A.J. (2013), "Carbon nanotubes: Present and future commercial applications", Science, 339(6119), 535-539. https://doi.org/10.1126/science.1222453.
  25. Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837.
  26. Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781.
  27. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499.
  28. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141-169. https://doi.org/10.12989/anr.2017.5.2.141.
  29. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527.
  30. Ghadiri, M., Mahinzare, M., Shafiei, N. and Ghorbani, K. (2017a), "On size-dependent thermal buckling and free vibration of circular FG Microplates in thermal environments", Microsyst. Technologies, 23(10), 4989-5001. https://doi.org/10.1007/s00542-017-3308-x.
  31. Ghadiri, M. and Shafiei, N. (2016a), "Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen's theory using differential quadrature method", Microsyst. Technologies, 22(12), 2853-2867. https://doi.org/10.1007/s00542-015-2662-9.
  32. Ghadiri, M. and Shafiei, N. (2016b), "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control, 23(19), 3247-3265. https://doi.org/10.1177/1077546315627723.
  33. Ghadiri, M. and Shafiei, N. (2016c), "Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions", Acta Astronautica, 121, 221-240. https://doi.org/10.1016/j.actaastro.2016.01.003.
  34. Ghadiri, M., Shafiei, N. and Akbarshahi, A. (2016b), "Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam", Appl. Phys. A., 122(7), 673. https://doi.org/10.1007/s00339-016-0196-3.
  35. Ghadiri, M., Shafiei, N. and Alavi, H. (2017b), "Thermomechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770.
  36. Ghadiri, M., Shafiei, N. and Alavi, H. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337. 20.1001.1.20083505.2017.9.2.8.5. 20.1001.1.20083505.2017.9.2.8.5
  37. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016c), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A., 122(9), 837. https://doi.org/10.1007/s00339-016-0364-5.
  38. Ghadiri, M., Shafiei, N. and Babaei, R. (2017d), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., 25(2), 197-207. https://doi.org/10.12989/scs.2017.25.2.197.
  39. Ghadiri, M., Shafiei, N. and Safarpour, H. (2017e), "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen's nonlocal elasticity", Microsyst. Technologies, 23(4), 1045-1065. https://doi.org/10.1007/s00542-016-2822-6.
  40. Ghadiri, M., Shafiei, N., Salekdeh, S.H., Mottaghi, P. and Mirzaie, T. (2016d), "Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface", J. Braz. Soc. Mech. Sci. Eng., 38(2), 335-343. https://doi.org/10.1007/s40430-015-0472-8.
  41. Gong, Z.G. (2013), "Nanotechnology application in sports", Adv. Mater. Res., 662, 186-189. https://doi.org/10.4028/www.scientific.net/AMR.662.186.
  42. Gouzman, I., Grossman, E., Verker, R., Atar, N., Bolker, A. and Eliaz, N. (2019), "Advances in polyimide-based materials for space applications", Adv. Mater., 31(18), 1807738. https://doi.org/10.1002/adma.201807738.
  43. Guo, J., Baharvand, A., Tazeddinova, D., Habibi, M., Safarpour, H., Roco-Videla, A. and Selmi, A. (2021a), "An intelligent computer method for vibration responses of the spinning multilayer symmetric nanosystem using multi-physics modeling", En. with Comput., 1-22. https://doi.org/10.1007/s00366-021-01433-4.
  44. Guo, Y., Mi, H. and Habibi, M. (2021b), "Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system", Mech. Syst. Signal Pr., 157, 107723. https://doi.org/10.1016/j.ymssp.2021.107723.
  45. Habibi, M., Darabi, R., Sa, J.C.D. and Reis, A. (2021), "An innovation in finite element simulation via crystal plasticity assessment of grain morphology effect on sheet metal formability", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 235(8), 1937-1951. https://doi.org/10.1177/14644207211024686.
  46. Handford, C.E., Dean, M., Henchion, M., Spence, M., Elliott, C.T. and Campbell, K. (2014), "Implications of nanotechnology for the agri-food industry: Opportunities, benefits and risks", Trends in Food Sci. Technol., 40(2), 226-241. https://doi.org/10.1016/j.tifs.2014.09.007.
  47. Harifi, T. and Montazer, M. (2015), "Application of nanotechnology in sports clothing and flooring for enhanced sport activities, performance, efficiency and comfort: a review", J. Ind. Textiles, 46(5), 1147-1169. https://doi.org/10.1177/1528083715601512.
  48. Hashemi, H.R., Alizadeh, A.A., Oyarhossein, M.A., Shavalipour, A., Makkiabadi, M. and Habibi, M. (2019), "Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure", Waves in Random Complex Media, 1-27. https://doi.org/10.1080/17455030.2019.1662968.
  49. He, X., Ding, J., Habibi, M., Safarpour, H. and Safarpour, M. (2021), "Non-polynomial framework for bending responses of the multi-scale hybrid laminated nanocomposite reinforced circular/annular plate", Thin-Wall. Struct., 166, 108019. https://doi.org/10.1016/j.tws.2021.108019.
  50. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. with Comput., 1-19. https://doi.org/10.1007/s00366-021-01456-x.
  51. Hsueh, H.B. and Chen, C.Y. (2003), "Preparation and properties of LDHs/polyimide nanocomposites", Polymer, 44(4), 1151- 1161. https://doi.org/10.1016/S0032-3861(02)00887-X.
  52. Huang, J.Y., Chen, S., Wang, Z.Q., Kempa, K., Wang, Y.M., Jo, S.H., Chen, G., Dresselhaus, M.S. and Ren, Z.F. (2006), "Superplastic carbon nanotubes", Nature, 439(7074), 281-281. https://doi.org/10.1038/439281a.
  53. Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2021a), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. with Comput., 1-17. https://doi.org/10.1007/s00366-021-01399-3.
  54. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021b), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. with Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7.
  55. Inshakova, E. and Inshakov, O. (2017), "World market for nanomaterials: structure and trends", MATEC Web Conf., 129. https://doi.org/10.1051/matecconf/201712902013.
  56. Ji, Y. (2012), "The Applied Research of Nano-Material in Athletic Facilities and Sports Equipments", Adv. Mater. Res., 459 398-401. https://doi.org/10.4028/www.scientific.net/AMR.459.398.
  57. Jiang, Y.P. and Wang, Y.X. (2013), "Study of Sport Devices Based on Nanomaterial", Appl. Mech. Mater., 329 75-78. https://doi.org/10.4028/www.scientific.net/AMM.329.75.
  58. Kostoff, R.N., Stump, J.A., Johnson, D., Murday, J.S., Lau, C.G.Y. and Tolles, W.M. (2006), "The structure and infrastructure of the global nanotechnology literature", J. Nanoparticle Res., 8(3), 301-321. https://doi.org/10.1007/s11051-005-9035-8.
  59. Li, B.F. (2013), "Design of Sports Field Based on Nanometer Materials", Appl. Mech. Mater., 340, 366-369. https://doi.org/10.4028/www.scientific.net/AMM.340.366.
  60. Li, J., Tang, F. and Habibi, M. (2020a), "Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure", Eng. with Comput., 1-22. https://doi.org/10.1007/s00366-020-01110-y.
  61. Li, P., Yang, M. and Wu, Q. (2021), "Confidence interval based distributionally robust real-time economic dispatch approach considering wind power accommodation risk", IEEE T. Sust. Energy, 12(1), 58-69. https://doi.org/10.1109/TSTE.2020.2978634.
  62. Li, R., Liu, Z., Chen, R. and Guo, S. (2023), "In-situ fabrication of polyimide microphase and its effects on the mechanical and dielectric properties of polytetrafluoroethylene composite films", Compos. Part A: Appl. Sci. Manuf., 166, 107381. https://doi.org/10.1016/j.compositesa.2022.107381.
  63. Li, Y., Li, S., Guo, K., Fang, X. and Habibi, M. (2020b), "On the modeling of bending responses of graphene-reinforced higher order annular plate via two-dimensional continuum mechanics approach", Eng. with Comput., 1-22. https://doi.org/10.1007/s00366-020-01166-w.
  64. Liaw, D.J., Wang, K.L., Huang, Y.C., Lee, K.R., Lai, J.Y. and Ha, C.S. (2012), "Advanced polyimide materials: Syntheses, physical properties and applications", Progress in Polymer Sci., 37(7), 907-974. https://doi.org/10.1016/j.progpolymsci.2012.02.005.
  65. Liu, H., Shen, S., Oslub, K., Habibi, M. and Safarpour, H. (2021a), "Amplitude motion and frequency simulation of a composite viscoelastic microsystem within modified couple stress elasticity", Eng. with Comput., 1-15. https://doi.org/10.1007/s00366-021-01316-8.
  66. Liu, H., Zhao, Y., Pishbin, M., Habibi, M., Bashir, M. and Issakhov, A. (2021b), "A comprehensive mathematical simulation of the composite size-dependent rotary 3D microsystem via two-dimensional generalized differential quadrature method", Eng. with Comput., 1-16. https://doi.org/10.1007/s00366-021-01419-2.
  67. Liu, S., Niu, B., Zong, G., Zhao, X. and Xu, N. (2022), "Adaptive fixed-time hierarchical sliding mode control for switched underactuated systems with dead-zone constraints via event-triggered strategy", Appl. Math. Comput., 435, 127441. https://doi.org/10.1016/j.amc.2022.127441.
  68. Liu, Z., Su, S., Xi, D. and Habibi, M. (2020a), "Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method", Mech. Based Des. Struct. Mach., 1-26. https://doi.org/10.1080/15397734.2020.1784201.
  69. Liu, Z., Wu, X., Yu, M. and Habibi, M. (2020b), "Large-amplitude dynamical behavior of multilayer graphene platelets reinforced nanocomposite annular plate under thermomechanical loadings", Mech. Based Des. Struct. Mach., 1-25. https://doi.org/10.1080/15397734.2020.1815544.
  70. Lori, E.S., Ebrahimi, F., Supeni, E.E.B., Habibi, M. and Safarpour, H. (2020), "The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer", Eng. with Comput., 1-20. https://doi.org/10.1007/s00366-020-01004-z.
  71. Meng, Y.L. and Zhu, J.Q. (2013), "Application of Nanomaterial in Sports and its Safety Research", Appl. Mech. Mater., 387 36-39. https://doi.org/10.4028/www.scientific.net/AMM.387.36.
  72. Miah, A. (2006), "Rethinking Enhancement in Sport", Annal. New York Academy Sci., 1093(1), 301-320. https://doi.org/10.1196/annals.1382.020.
  73. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A., Kazemi, M. and Structures, C. (2017a), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
  74. Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S. and Mohasel Afshari, B. (2017b), "Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam", J. Therm. Stresses, 40(10), 1201-1214. https://doi.org/10.1080/01495739.2017.1332962.
  75. Mirjavadi, S.S., Mohasel Afshari, B., Shafiei, N., Rabby, S. and Kazemi, M. (2017c), "Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam", J. Vib. Control., 24(18), 4211-4225. https://doi.org/10.1177/1077546317721871.
  76. Mirjavadi, S.S., Rabby, S., Shafiei, N., Afshari, B.M. and Kazemi, M. (2017d), "On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment", Appl. Phys. A., 123(5), 315. https://doi.org/10.1007/s00339-017-0918-1.
  77. Mousavi, S.M., Shafiei, N. and Dadvand, A. (2017), "Numerical simulation of subsonic turbulent flow over NACA0012 airfoil: evaluation of turbulence models", Sigma J. Eng. Nat. Sci., 35(1), 133-155. https://dergipark.org.tr/en/pub/sigma/issue/65585/1016455#article_cite. 1016455#article_cite
  78. Mukhopadhyay, A. and Vinay Kumar, M. (2008a), "A review on designing the waterproof breathable fabrics Part I: Fundamental principles and designing aspects of breathable fabrics", J. Ind. Textiles, 37(3), 225-262. https://doi.org/10.1177/1528083707082164.
  79. Mukhopadhyay, A. and Vinay Kumar, M. (2008b), "A Review on Designing the Waterproof Breathable Fabrics Part II: Construction and Suitability of Breathable Fabrics for Different Uses", J. Ind. Textiles, 38(1), 17-41. https://doi.org/10.1177/1528083707082166.
  80. Najaafi, N., Jamali, M., Habibi, M., Sadeghi, S., Jung, D.W. and Nabipour, N. (2020), "Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory", J. Biomol. Struct. Dyn., 1-12. https://doi.org/10.1080/07391102.2020.1751297.
  81. Omidi, S., Oskooee, M.B. and Shafiei, N. (2013), "Finite element analysis of an ultra-fine grained Titanium dental implant covered by different thicknesses of hydroxyapatite layer", Indian J. Dentistry, 4(1), 1-4. https://doi.org/10.1016/j.ijd.2012.10.002.
  82. Patra, J.K. (2013), "Application of nanotechnology in textile engineering: An overview", J. Eng. Technol. Res., 5, 104-111. https://doi.org/10.5897/JETR2013.0309.
  83. Rahman, M.M., Hussein, M.A., Alamry, K.A., Al-Shehry, F.M. and Asiri, A.M. (2018), "Polyaniline/graphene/carbon nanotubes nanocomposites for sensing environmentally hazardous 4-aminophenol", Nano-Structures & Nano-Objects. 15, 63-74. https://doi.org/10.1016/j.nanoso.2017.08.006.
  84. Rhim, J.W. and Ng, P.K.W. (2007), "Natural biopolymer-based nanocomposite films for packaging applications", Critical Reviews in Food Science and Nutrition, 47(4), 411-433. https://doi.org/10.1080/10408390600846366.
  85. Sabine, G.l., Rene, F. and Myrtill, S. (2012), Carbon nanotubes-part I: Introduction, production, areas of application (NanoTrust Dossier No. 022en-February 2012), Eigenverlag/Selfpublished, Wien. https://doi.org/10.1553/ITA-nt-022en.
  86. Shafiei, N., Ghadiri, M. and Mahinzare, M. (2019), "Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment", Mech. Adv. Mater. Struct., 26(2), 139-155. https://doi.org/10.1080/15376494.2017.1365982.
  87. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017a), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Math. Model., 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061.
  88. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32. 20.1001.1.20083505.2020.12.1.2.8. 20.1001.1.20083505.2020.12.1.2.8
  89. Shafiei, N. and Kazemi, M. (2017a), "Buckling analysis on the bidimensional functionally graded porous tapered nano-/microscale beams", Aerosp. Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019.
  90. Shafiei, N. and Kazemi, M. (2017b), "Nonlinear buckling of functionally graded nano-/micro-scaled porous beams", Compos. Struct., 178, 483-492. https://doi.org/10.1016/j.compstruct.2017.07.045.
  91. Shafiei, N., Kazemi, M. and Fatahi, L. (2017b), "Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method", Mech. Adv. Mater. Struct., 24(3), 240-252. https://doi.org/10.1080/15376494.2015.1128025.
  92. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams", Physica E: Low-dimensional Syst. Nanostruct., 83, 74-87. https://doi.org/10.1016/j.physe.2016.04.011.
  93. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016b), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A., 122(8), 728. https://doi.org/10.1007/s00339-016-0245-y.
  94. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016c), "Nonlinear vibration of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 102, 12-26. https://doi.org/10.1016/j.ijengsci.2016.02.007.
  95. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016d), "On size-dependent vibration of rotary axially functionally graded microbeam", Int. J. Eng. Sci., 101, 29-44. https://doi.org/10.1016/j.ijengsci.2015.12.008.
  96. Shafiei, N., Kazemi, M., Safi, M. and Ghadiri, M. (2016e), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", Int. J. Eng. Sci., 106, 77-94. https://doi.org/10.1016/j.ijengsci.2016.05.009.
  97. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017c), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048.
  98. Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S. and Kazemi, M. (2017d), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Method. Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.
  99. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016f), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.
  100. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016g), "Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM", Compos. Struct., 149, 157-169. https://doi.org/10.1016/j.compstruct.2016.04.024.
  101. Shafiei, N. and She, G.-L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004.
  102. Shao, Y., Zhao, Y., Gao, J. and Habibi, M. (2021), "Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force", Archiv. Civil Mech. Eng., 21(4), 1-29. https://doi.org/10.1007/s43452-021-00279-3.
  103. Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586.
  104. Shea, C.M. (2005), "Future management research directions in nanotechnology: A case study", J. Eng. Technol. Management, 22(3), 185-200. https://doi.org/10.1016/j.jengtecman.2005.06.002.
  105. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A., 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9.
  106. Si, Z., Yang, M., Yu, Y. and Ding, T. (2021), "Photovoltaic power forecast based on satellite images considering effects of solar position", Appl. Energ., 302, 117514. https://doi.org/10.1016/j.apenergy.2021.117514.
  107. Singh, N.A. (2016), Nanotechnology Definitions, Research, Industry and Property Rights, Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-39303-2_2.
  108. Singh, N.A. (2017), "Nanotechnology innovations, industrial applications and patents", Environ. Chemistry Lett., 15(2), 185-191. https://doi.org/10.1007/s10311-017-0612-8.
  109. Song, Z.Q. and Cai, Y.T. (2013), "Application of Nano-Materials in Sports Engineering", Adv. Mater. Res., 602-604, 281-284. https://doi.org/10.4028/www.scientific.net/AMR.602-604.281.
  110. Su, Q.F. (2014), "Analysis of new materials in competitive sports", Appl. Mech. Mater., 539, 925-927. https://doi.org/10.4028/www.scientific.net/AMM.539.925.
  111. Wang, P., Gao, Z., Pan, F., Moradi, Z., Mahmoudi, T. and Khadimallah, M.A. (2022), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bidirectional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Anal. Bound. Elem., 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007.
  112. Wang, P. and Wang, J.Y. (2014), "Development and application of nanotechnology in sports", Adv. Mater. Res., 918, 54-58. https://doi.org/10.4028/www.scientific.net/AMR.918.54.
  113. Wang, Z., Yu, S., Xiao, Z. and Habibi, M. (2020), "Frequency and buckling responses of a high-speed rotating fiber metal laminated cantilevered microdisk", Mech. Adv. Mater. Struct., 1-14. https://doi.org/10.1080/15376494.2020.1824284.
  114. Wei, D., Pu, N., Li, S.Y., Wang, Y.G. and Tao, Y. (2023), "Application of iontophoresis in ophthalmic practice: an innovative strategy to deliver drugs into the eye", Drug Delivery, 30(1), 2165736. https://doi.org/10.1080/10717544.2023.2165736.
  115. Wu, J. and Habibi, M. (2021), "Dynamic simulation of the ultra-fast-rotating sandwich cantilever disk via finite element and semi-numerical methods", Eng. with Comput., 1-17. https://doi.org/10.1007/s00366-021-01396-6.
  116. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  117. Yano, K., Usuki, A. and Okada, A. (1997), "Synthesis and properties of polyimide-clay hybrid films", J. Polymer Sci. Part A: Polymer Chemistry, 35(11), 2289-2294. https://doi.org/10.1002/(SICI)10990518(199708)35:11<2289::AID-POLA20>3.0.CO;2-9.
  118. Youtie, J., Iacopetta, M. and Graham, S. (2008), "Assessing the nature of nanotechnology: can we uncover an emerging general purpose technology?", J. Technol. Transfer., 33(3), 315-329. https://doi.org/10.1007/s10961-007-9030-6.
  119. Zare, R., Najaafi, N., Habibi, M., Ebrahimi, F. and Safarpour, H. (2020), "Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller", Smart Struct. Syst., 26(4), 469-480. https://doi.org/10.12989/sss.2020.26.4.469.
  120. Zhang, H., Zou, Q., Ju, Y., Song, C. and Chen, D. (2022), "Distance-based support vector machine to predict DNA N6-methyladenine Modification", Current Bioinform., 17(5), 473-482. https://doi.org/10.2174/1574893617666220404145517.
  121. Zhang, X., Shamsodin, M., Wang, H., NoormohammadiArani, O., Khan, A.M., Habibi, M. and Al-Furjan, M. (2020), "Dynamic information of the time-dependent tobullian biomolecular structure using a high-accuracy size-dependent theory", J. Biomolecular Struct. Dynam., 1-16. https://doi.org/10.1080/07391102.2020.1760939.
  122. Zhang, Y., Wang, Z., Tazeddinova, D., Ebrahimi, F., Habibi, M. and Safarpour, H. (2021), "Enhancing active vibration control performances in a smart rotary sandwich thick nanostructure conveying viscous fluid flow by a PD controller", Waves in Random Complex Media, 1-24. https://doi.org/10.1080/17455030.2021.1948627.
  123. Zhao, H.E. and Shen, F. (2012), "The applied research of nanophase materials in sports engineering", Adv. Mater. Res., 496, 126-129. https://doi.org/10.4028/www.scientific.net/AMR.496.126.
  124. Zhou, C., Zhao, Y., Zhang, J., Fang, Y. and Habibi, M. (2020), "Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system", Adv. Nano Res., 9(4), 295-307. https://doi.org/10.12989/anr.2020.9.4.295.
  125. Zhu, Z.X. (2012), "Research on nano materials tennis rackets", Adv. Mater. Res., 507, 75-78. https://doi.org/10.4028/www.scientific.net/AMR.507.75.