DOI QR코드

DOI QR Code

Analysis and implementation of passive soft switching snubber for PWM inverters

  • Enhui Chu (College of Information Science and Engineering, Northeastern University) ;
  • Zhiyong Wang (College of Information Science and Engineering, Northeastern University) ;
  • Yunjing Kang (College of Information Science and Engineering, Northeastern University)
  • Received : 2021.12.02
  • Accepted : 2022.08.30
  • Published : 2023.01.20

Abstract

To realize a three-phase soft-switching inverter with a simple structure, low cost, and easy modularization, this paper proposes a novel three-phase passive soft-switching inverter, which realizes soft-switching of the switches in the inverter through energy consumption of the auxiliary snubber circuit. When compared with the traditional passive soft-switching inverter, it avoids the use of transformers, coupled inductors, and bulk electrolyte capacitors. Thus, it has a small size, a high power density, and is suitable for integration. Its three single phases are independent of each other, which makes it easy for the inverter to apply various control strategies. This study chooses a single-phase circuit, and investigates the operating principle, soft-switching implementation characteristics, and parameter design methods of the novel passive soft-switching inverter under various operation modes. Finally, a 10 kW/16 kHz prototype is made using an IGBT as a switch, and experiments are conducted to confirm the validity of the inverter.

Keywords

Acknowledgement

National Natural Science Foundation of China, 51977028, Enhui Chu.

References

  1. Pan, Z.Y., Luo, F.L.: Novel resonant pole inverter for brushless DC motor drive system. IEEE Trans. Power Electron. 20(1), 173-181 (2005) https://doi.org/10.1109/TPEL.2004.839814
  2. Han, B.M., Moon, S.I.: Static reactive-power compensator using soft-switching current-source inverter. IEEE Trans. Ind. Elec. 48(6), 1158-1165 (2001) https://doi.org/10.1109/41.969394
  3. Pakdel, M.: A new soft-switched three-phase four-wire shunt active power flter. Proc. IEEE Vehicle Power and Propulsion Conference, 1-7 (2008)
  4. Rizet, C., Ferrieux, J. P., Moigne, P. Le., Delarue, P., Lacarnoy, A.: Effciency improvement in soft-switching three-level converters for high power UPS. Proc. IEEE Int. Conf. Energy Convers. Congr. Expo. Pp. 1585-1590 (2010)
  5. Yang, B., Li, W., Gu, Y., Cui, W., He, X.: Improved transformerless inverter with common-mode leakage current elimination for a photovoltaic grid-connected power system. IEEE Trans. Power Electron. 27(2), 752-762 (2012)
  6. Kedarisetti, J., Mutschler, P.: A motor-friendly quasi-resonant DC-Link inverter with lossless variable zero-voltage duration. IEEE Trans. Power Electron. 27(5), 2613-2622 (2012) https://doi.org/10.1109/TPEL.2011.2174382
  7. Rigbers, K., De Doncker, R. W.: Soft-switching three-phase PWM inverter architecture utilizing coupling switches between input and output stage. European Conference on Power Electronics and Applications. 1-10 (2009)
  8. Yang, F., et al.: Design of a high-effciency minimum-torqueripple 12-V/1-kW three-phase BLDC motor drive system for diesel engine emission reductions. IEEE Trans. Veh. Technol. 63(7), 3107-3115 (2014) https://doi.org/10.1109/TVT.2014.2300931
  9. Xiao, H., Zhang, L., Wang, Z., Cheng, M.: A new soft-switching configuration and its application in transformerless photovoltaic grid-connected inverters. IEEE Trans. Ind. Ele. 65(12), 9518-9527 (2018) https://doi.org/10.1109/tie.2018.2826481
  10. Wai, R., Duan, R., Lee, J., Liu, L.: High-effciency fuel-cell power inverter with soft-switching resonant technique. IEEE Trans. Energy Convers. 20(2), 485-492 (2005) https://doi.org/10.1109/TEC.2004.832092
  11. Charalambous, A., Yuan, X., McNeill, N.: high-frequency EMI attenuation at source with the auxiliary commutated pole inverter. IEEE Trans. Power Electron. 33(7), 5660-5676 (2018) https://doi.org/10.1109/tpel.2017.2743041
  12. Cai, M., Wasynczuk, O., Saeedifard, M.: A voltage-edge-ratelimiting soft-switching inverter based on auxiliary resonant pole. IEEE J. Emerg. Sel. Top. Power Electron 7(2), 736-744 (2019) https://doi.org/10.1109/jestpe.2019.2898890
  13. Li, R., Xu, D.: A zero-voltage switching three-phase inverter. IEEE Trans. Power Electron. 29(3), 1200-1210 (2014) https://doi.org/10.1109/TPEL.2013.2260871
  14. Chu, E., Wu, M., Huang, L., Hou, L., Zhang, H.: Research on a novel modulation strategy for auxiliary resonant commutated pole inverter with the smallest loss in auxiliary commutation circuits. IEEE Trans. Power Electron. 29(3), 1103-1117 (2014) https://doi.org/10.1109/TPEL.2013.2261092
  15. Chu, E., Zhang, X., Sun, Q., Li, S., Xiong, H., Yang, X.: Threephase double auxiliary resonant commutated pole inverter topology and analysis of its working principle. IET Power Electron. 9(7), 1536-1545 (2016) https://doi.org/10.1049/iet-pel.2015.0393
  16. Undeland, T., Jenset, F., Steinbakk, A., Rogne, T., Hernes, M.: A snubber configuration for both poker transistors and GTO PHH inverters. in IEEE Power Electron. Specialists Conf,pp. 42-53 (1984)
  17. McMurray, W.: Effcient snubbers for voltage-source GTO inverters. IEEE Trans. Power Electron. 2(3), 264-272 (1987) https://doi.org/10.1109/TPEL.1987.4766368
  18. Holtz, J., Salama, S., Werner, K.H.: A nondissipative snubber circuit for high-power GTO inverters. IEEE Trans. Ind. Appl. 25(4), 620-626 (1989) https://doi.org/10.1109/28.31238
  19. He, X., Finney, S.J., Williams, S.J., Qian, Zhao.-Ming.: Novel passive lossless turn-on snubber for voltage source inverters. IEEE Trans. Power Electron. 12(1), 173-179 (1997) https://doi.org/10.1109/63.554183
  20. Deng, Y., Wu, Y., He, X., Qian, Zhao.: A novel passive lossless snubber for power inverter bridge legs. in Proc. CSEE, 20(3), 6-10 (2000)( in Chinese)
  21. Williams, B.W., Finney, S.J.: Passive snubber energy recovery for a GTO thyristor inverter bridge leg. IEEE Trans. Ind. Electron. 47(1), 2-8 (2000) https://doi.org/10.1109/41.824016
  22. Peng, F.Z., Su, G., Jia., Tolbert, L. M.: A passive soft-switching snubber for PWM inverters. IEEE Trans. Power Electron. 19(2), 363-370 (2004) https://doi.org/10.1109/TPEL.2003.823204
  23. Smith, K.M., Smedley, K.M.: Lossless passive soft-switching methods for inverters and amplifiers. IEEE Trans. Power Electron. 15(1), 164-173 (2000) https://doi.org/10.1109/63.817374
  24. Zhang, H., Wang, Q., Chu, E., Liu, X., Hou, L.: Analysis and implementation of a passive lossless soft-switching snubber for PWM inverters. IEEE Trans. Power Electron. 26(2), 411-426 (2011) https://doi.org/10.1109/TPEL.2010.2054836
  25. Cheriti, A., Al-Haddad, K., Dessaint, A., Meynard, T.A., Mukhedkar, D.: A rugged soft commutated PWM inverter for AC drives. IEEE Trans. Power Electron. 7(2), 385-392 (1992) https://doi.org/10.1109/63.136256
  26. He, X., Chen, A., Wu, H., Deng, Y., Zhao, R.: Simple passive lossless snubber for high-power multilevel inverters. IEEE Trans. Ind. Electron. 53(3), 727-735 (2006) https://doi.org/10.1109/TIE.2006.874422
  27. Amirahmadi, A., Hu, H., Grishina, A., Zhang, Q., Chen, L., Somani, U., Batarseh, I.: Hybrid ZVS BCM Current Controlled Three-Phase Microinverter. IEEE Trans. Power Electron. 29(4), 2124-2134 (2014) https://doi.org/10.1109/TPEL.2013.2271302