DOI QR코드

DOI QR Code

Electrolytic silane deposition to improve the interfacial adhesion Ag and epoxy substrate

Ag/에폭시간 계면 접착력 향상을 위한 전해 실란 처리

  • Received : 2023.01.11
  • Accepted : 2023.01.31
  • Published : 2023.02.28

Abstract

The reliability of leadframe-based semiconductor package depends on the adhesion between metal and epoxy molding compound (EMC). In this study, the Ag surface was electrochemically treated in a solution containing silanes in order to improve the adhesion between Ag and epoxy substrate. After electrochemical treatment, the thin silane layer was deposited on the Ag surface, whereby the peel strength between Ag and epoxy substrate was clearly improved. The improvement of peel strength depended on the functional group of silane, implying the chemical linkage between Ag and epoxy.

Keywords

References

  1. O. Sluis, S. Noijen, P. Timmermans, On the effect of microscopic surface roughness on macroscopic polymer-metal adhesion, W.D.v. Driel, X. Fan, G.Q. Zhang (Eds.), Solid State Lighting Reliability, Springer, Switzerland (2013) 317-327.
  2. S. C. Chao, W. C. Huang, J. H. Liu, J. M. Song, P. Y. Shen, C. L. Huang, L. T. Hung, C. H. Chang, Oxidation characteristics of commercial copper-based lead frame surface and the bonding with epoxy molding compounds, Microelectron. Reliab., 99 (2019) 161-167. https://doi.org/10.1016/j.microrel.2019.05.020
  3. Y. H. Kwon, D. Park, J. Y. Lee, Y. B. Park, S. Choe, K. H. Lee, Electrolytic chromate films prepared via pulse electrodeposition as a Cu-Epoxy adhesion promoter, J. Electrochem. Soc., 167 (2020) 022512.
  4. S. H. Zaferani, M. Peikari, D. Zaarei, I. Danaee, J. M. Fakhraei, M. Mohammadi, Using silane films to produce an alternative for chromate conversion coatings, Corrosion, 69 (2013) 372-387. https://doi.org/10.5006/0686
  5. F. Deflorian, S. Rossi, L. Fedrizzi, Silane pre-treatments on copper and aluminium, Electrochim. Acta, 51 (2006) 6097-6103. https://doi.org/10.1016/j.electacta.2006.02.042
  6. G. Herlem, O. Segut, A. Antoniou, C. Achilleos, D. Dupont, V. Blondeau-Patissier, T. Gharbi, Electrodeposition and characterization of silane thin films from 3-(Aminopropyl)triethoxysilane, Surf. Coat. Technol., 202 (2008) 1437-1442. https://doi.org/10.1016/j.surfcoat.2007.06.038
  7. J. L. Yague, N. Agullo, G. Fonder, J. Delhalle, Z. Mekhalif, S. Borros, Thiol versus selenol sams as nucleation enhancers and adhesion promoters for plasma polymerized pyrrole on copper substrates, Plasma Process Polym., 7 (2010) 601-609. https://doi.org/10.1002/ppap.200900178
  8. J. S. Gandhi, W. J.mOij, Improved corrosion protection of aluminum alloys by electrodeposited silanes, J. Mater. Eng. Perform., 13 (2004) 475-480. https://doi.org/10.1361/10599490420016
  9. E. Sibottier, S. Sayen, F. Gaboriaud, A. Walcarius, Factors affecting the preparation and properties of electrodeposited silica thin films functionalized with amine or thiol groups, Langmuir, 22 (2006) 8366-8373. https://doi.org/10.1021/la060984r
  10. M. Sheffer, A. Groysman, D. Mandler, Electrodeposition of sol-gel films on Al for corrosion protection, Corros. Sci., 45 (2003) 2893-2904. https://doi.org/10.1016/S0010-938X(03)00106-9
  11. J. P. Matinlinna, C. Y. K. Lung, J. K. H. Tsoi, Silane adhesion mechanism in dental applications and surface treatments: a review, Dent. Mater., 34 (2018) 13-28. https://doi.org/10.1016/j.dental.2017.09.002
  12. X. Rao, M. Tatoulian, C. Guyon, S. Ognier, C. Chu, A. Abou Hassan, A comparison study of functional groups (amine vs. thiol) for immobilizing aunps on zeolite surface, J. Nanomater., 9 (2019) 1034.
  13. F. D. Osterholtz, E. R. Pohl, Kinetics of the hydrolysis and condensation of organofunctional alkoxysilanes: a review, J. Adhes. Sci. Technol., 6 (1992) 127-149. https://doi.org/10.1163/156856192X00106
  14. F. D. Blum, W. Meesiri, H. J. Kang, J. E. Gambogi, Hydrolysis, adsorption, and dynamics of silane coupling agents on silica surfaces, J. Adhes. Sci. Technol., 5 (1991) 479-496. https://doi.org/10.1163/156856191X00611
  15. M. C. B. Salon, M. N. Belgacem, Competition between hydrolysis and condensation reactions of trialkoxysilanes, as a function of the amount of water and the nature of the organic group, Colloids Surf. A: Physicochem. Eng. Asp., 366 (2010) 147-154. https://doi.org/10.1016/j.colsurfa.2010.06.002
  16. S. S. Abbas, G. J. Rees, N. L. Kelly, C. E. J. Dancer, J. V. Hanna, T. McNally, Facile silane functionalization of graphene oxide, Nanoscale, 10 (2018) 16231-16242. https://doi.org/10.1039/c8nr04781b
  17. X. Q. Du, Y. W. Liu, Y. Chen, Enhancing the corrosion resistance of aluminum by superhydrophobic silane/graphene oxide coating, Appl. Phys. A, 127 (2021) 1-11. https://doi.org/10.1007/s00339-020-04132-x
  18. M. Z. Strzalka, A. D. Marczewska, R. B. Kozakevych, Silica nanocomposites based on silver nanoparticles-functionalization and Ph effect, Appl. Nanosci., 8 (2018) 1649-1668. https://doi.org/10.1007/s13204-018-0837-2