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TIME PERIODIC SOLUTIONS TO A HEAT EQUATION

WITH LINEAR FORCING AND BOUNDARY CONDITIONS

In-Jee Jeong and Sun-Chul Kim

Abstract. In this study, we consider a heat equation with a variable-

coefficient linear forcing term and a time-periodic boundary condition.
Under some decay and smoothness assumptions on the coefficient, we es-

tablish the existence and uniqueness of a time-periodic solution satisfying
the boundary condition. Furthermore, possible connections to the closed

boundary layer equations were discussed. The difficulty with a perturbed

leading order coefficient is demonstrated by a simple example.

1. Introduction

In this study, the existence and uniqueness of a time periodic solution for
the following 1D heat equation with a linear forcing term were considered:

(1.1)


Qt −Qxx = g(t, x)Q,

Q(t, 0) = h(t),

Q(t,∞) = 0,

where (t, x) ∈ (R/(2πZ)) × [0,∞) and g, h are the given real-valued smooth
functions that are 2π-periodic in t. Furthermore, it is assumed that h has a
mean of zero. There are several studies on the solvability of equations of the
form (1.1), assuming that h ≡ 0. In this case, one can solve the equation under
extremely general assumptions regarding the coefficient; see [3, 5, 6, 9, 12, 13]
and references therein. Several abstract existence theorems for time-periodic
differential equations can be found in [2, 4, 14].

However, the authors are not aware of any previous studies on the time-
periodic solutions when h is non-trivial, unless the right-hand side of the equa-
tion for Q takes a special form. Specifically, the authors are interested in the
case where h is nontrivial and g is small, such that (presumably) the solution
approaches that of the homogeneous case where g ≡ 0. This interest in (1.1)
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stems from a boundary layer equation for the closed streamlines (see Section 4
below), where it is essential to have a nontrivial boundary condition on {x = 0}.
Notably, when g vanishes, by taking the Fourier series in t, the following can
be arrived at:

Q∗ =
∑
n∈Z

e−
√

n
2 (1+i)xeinthn.(1.2)

This is the unique smooth time periodic solution to (1.1), where hn is the n-th
Fourier coefficient of h. Unfortunately, it becomes incredibly difficult to solve
(1.1) when g is nontrivial and/or the coefficients of Qt or Qxx are perturbed
from constants; see the formal computations in Section 5 for a variable leading-
order coefficient case below. The primary result of this study shows that when
g is analytic in t and decays extremely fast in x, there exists a solution to (1.1)
that is close to (1.2).

2. Main result

The primary result of the problem (1.1) is stated below:

Theorem 2.1. For any ρ > 4, there exists a constant ε0 > 0 such that the
following holds true. Assume that the Fourier series {gn}n∈Z of g in t satisfies

|gn(x)| ≤ εe−ρ|n|−x2

for certain 0 < ε < ε0 and the Fourier series of h satisfies

sup
n∈Z\{0}

|n|e|n||hn| ≤ C.

Then there exists the unique solution Q to (1.1) that is C∞–smooth in t, x and
decaying exponentially fast as x→ ∞.

When proving the theorem, it shall be demonstrated that within a particular
class of smooth functions equipped with a special norm ∥ · ∥, the solution is
unique and is given by a perturbation of the homogeneous solution Q∗ from
(1.2). Furthermore, the solution satisfies ∥Q−Q∗∥ = O(ε).

Initially, it can be shown that at least in a few cases, the equation with a
variable coefficient in the leading order term can be reduced to the form (1.1).
For this purpose, under the same boundary conditions, consider

Qt − ψ(t)ϕ(x)Qxx = g(t, x)Q,(2.1)

where ψ is periodic by 2π and ϕ is defined as [0,∞). It is assumed that ψ and
ϕ are strictly positive, infinitely differentiable, and ϕ decays exponentially fast
as x → ∞. In this case, the variables in both t and x can be changed such
that the coefficient of the second-order term is normalized. First, the change
in variables is applied (assuming that ϕ > 0)

ϕ
1
2 (x)∂x = ∂x′ , x′(x) =

∫ x

0

dy

ϕ
1
2 (y)

,
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such that

∂x′x′ = ϕ
1
2 (x)∂x(ϕ

1
2 (x)∂x) = ϕ(x)∂xx +

ϕ′(x)

2ϕ
1
2 (x)

∂x′ ,

and with f := ϕ′(x)

2ϕ
1
2 (x)

, (2.1) changes to

Qt − ψ(t)(Qx′x′ − fQx′) = gQ.(2.2)

Next, the change in variables

1

ψ(t)
∂t = ∂t′

converts (2.2) into

Qt′ − (Qx′x′ − fQx′) =
g

ψ
Q.(2.3)

Here, ψ can be normalized such that t′ ∈ [0, 2π] for t ∈ [0, 2π]. Finally, the
following is defined

Q̃(t′, x′) = exp

(
−1

2

∫ x′

0

f

)
Q(t′, x′)

such that this equation is derived

Q̃t′ − Q̃x′x′ =

(
−fx

′

2
+
f2

4
+
g

ψ

)
Q̃,(2.4)

which is in the form of (1.1).

3. Proof of the main result

3.1. Expansion

For convenience, let g be replaced by εg (so that now g is in the order of 1),
and consider the following expansion:

Q =
∑
k≥0

εkQ(k),(3.1)

where Q(k) is defined by the solution of

(3.2)

Q
(k)
t −Q(k)

xx =
1

2
g(t)ϕ(x)Q(k−1),

Q(k)(t, 0) = Q(k)(t,∞) = 0

for all k ≥ 1. In the case of k = 0, Q(0) is considered to be the solution of

(3.3)


Q

(0)
t −Q(0)

xx = 0,

Q(0)(t, 0) = h(t),

Q(0)(t,∞) = 0.
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This is simply (1.2) or Q(0) = Q∗. A norm ∥ · ∥ has been constructed such that

∥Q(k)∥ ≤ C∥Q(k−1)∥

holds for an absolute constant C > 0. Once this is proven, Q defined by (3.1)
satisfies

∥Q∥ ≤
∑
k≥0

εk∥Q(k)∥ ≤ ∥Q(0)∥
∑
k≥0

(Cε)k <∞,

as long as ε < C−1. In the next section, the norm

∥F∥ := sup
n∈Z\{0}

sup
x∈[0,∞)

(
e|n|+

√
|n|
2 x|f ′′n (x)|+ |n|e|n|+

√
|n|
2 x|fn(x)|

)
(3.4)

is proven to be suitable for the application, where

F =
∑

n∈Z\{0}

fn(x)e
int

is the Fourier series expansion of F in t. Notably, the solution Q(0) of (3.2)
satisfies ∥Q(0)∥ <∞ owing to the assumption regarding h in Theorem 2.1.

3.2. An inhomogeneous problem

The following inhomogeneous problem is considered for F , where Q is re-
garded as a given function:

(3.5)

{
Ft = Fxx + g(t, x)Q,

F (t, 0) = F (t,∞) = 0.

From this point, g(t, x) is assumed to satisfy the condition in Theorem 2.1 with
ε = 1. Q and F are represented by a Fourier series in t:

F (t, x) =
∑
n∈Z

fn(x)e
int, Q(t, x) =

∑
n∈Z

qn(x)e
int
,

with f0 = q0 = 0. Next, by expanding both sides of (3.5) in the Fourier series,
the ordinary differential equation (ODE) satisfied by fn is obtained:

(3.6)

infn(x) = f ′′n (x) +
∑
k∈Z

gn−k(x)qk(x),

fn(0) = fn(∞) = 0.

The primary result regarding (3.5) is stated below:

Proposition 3.1. Assume that

e|n|+
√

|n|
2 x|q′′n(x)|+ |n|e|n|+

√
|n|
2 x|qn(x)| ≤ 1(3.7)

for all x ≥ 0 and n ∈ Z\{0}. Then, for a constant C > 0 depending only on
ρ > 4, such that

e|n|+
√

|n|
2 x|f ′′n (x)|+ |n|e|n|+

√
|n|
2 x|fn(x)| ≤ C.(3.8)
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Proof. Only the case n > 0 is considered. The case n < 0 is similar and will
be briefly discussed below. Note a particular solution of the ODE:

f ′′(x) = inf(x) + g(x)(3.9)

is given by

f(x) =
1

2αn

∫ x

0

(eαn(x−s) + e−αn(x−s))G(s)ds,(3.10)

where αn =
√
in :=

√
n
2 (1 + i) and

G(x) = −αn

∫ ∞

x

g(s)ds.

Further,

f ′(x) =
1

αn
G(x) +

1

2

∫ x

0

(eαn(x−s) − e−αn(x−s))G(s)ds,

from which (3.9) followed by differentiating once again. Therefore, it can be
observed that the unique solution to (3.6) is given by

fn(x) =
e−αnx

2αn

(∫ ∞

0

e−αnsGn(s)ds+

∫ x

0

eαnsGn(s)ds

)
(3.11)

− eαnx

2αn

∫ ∞

x

e−αnsGn(s)ds,

with

Gn(x) = αn

∫ ∞

x

ψn(s)ds, ψn(s) =
∑

k∈Z\{0}

gn−k(s)qk(s).(3.12)

First, ψn is estimated from the assumption regarding g,

|ψn(x)| ≤
∑

k∈Z\{0}

C|k|−1e−ρ|n−k|e−|k|−
√

|k|
2 xe−x2

.

When |k − n| > n/2, the following is estimated:∑
k:|k−n|>n/2

Ce−ρ|n−k||k|−1e−|k|−
√

|k|
2 x ≤ Ce−

ρ
2 |n| ≤ C|n|−1e−2|n|,

using the assumption ρ > 4. However, when n ≤ k < 3n/2,∑
k:n≤k<3n/2

C|k|−1e−ρ|n−k|e−|k|e−
√

k
2 x ≤ C|n|−1e−|n|e−

√
n
2 x
,

as
√

k
2 ≥

√
n
2 in this case. Finally, in the case where n/2 ≤ k < n, using ρ > 4

again,∑
k:n/2≤k<n

C|k|−1e−ρ|n−k|e−|k|e−
√

k
2 x ≤ C|n|−1e−2|n|

∑
n/2≤k<n

e−|k| ≤ C|n|−1e−2|n|.
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Combining the terms, the following estimate is derived:

|ψn(x)| ≤ C|n|−1(e−|n|e−
√

n
2 x + e−2|n|)e−x2

.

Subsequently, the equation can be bound using s ≥ x

e|n|e
√

n
2 x|Gn(x)| ≤ |αn|

∫ ∞

x

|ψn(s)|e|n|e
√

n
2 sds

≤ C|n|−1|αn|
∫ ∞

0

e−s2(1 + e
√

n
2 s−|n|)ds

and using

s2 −
√
n

2
s+ |n| ≥ 7

8
s2

gives

∥e|n|e
√

n
2 x|Gn(x)|∥L∞ ≤ C|n|−1|αn|.

Now, from the estimate

e|n|e
√

n
2 x|Gn(x)| ≤ |αn|

∫ ∞

x

|ψn(s)|e|n|e
√

n
2 sds,

using Fubini’s theorem, the following equation is derived:

∥e|n|e
√

n
2 x|Gn(x)|∥L1 ≤ |αn|

∫ ∞

0

∫ ∞

x

|ψn(s)|e|n|e
√

n
2 sdsdx ≤ C|αn||n|−1.

Further, the aforementioned estimates regarding Gn to bound fn(x) are
applied, and from the solution formula of fn, the following is estimated:

|e
√

n
2 xfn(x)| ≤

C

|αn|

∫ ∞

0

|eαnsGn(s)|ds+
C

|αn|
|e2αnx

∫ ∞

x

e−αnsGn(s)ds|.

Using ∫ ∞

0

|eαnsGn(s)|ds ≤ C|αn||n|−1e−|n|

and

|e2αnx

∫ ∞

x

e−αnsGn(s)ds| ≤ Ce−|n||n|−1|αn|
∫ ∞

x

e−2
√

n
2 (s−x)ds ≤ Ce−|n||n|−1,

the following is obtained:

|n|e|n||fn(x)e
√

n
2 x| ≤ C.

Next, using (3.6) with the previous estimate, the following equation can be
derived for f ′′n :

e|n||f ′′n (x)e
√

n
2 x| ≤ C.

Thus far, the case where n > 0 has been considered. If n < 0, let m = −n > 0;
the equation is derived in the same manner by considering αm =

√
i(−m) =
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m
2 (1− i). Next, the analogous inequalities and estimates are obtained using

a straightforward technique. This completes the proof of the proposition. □

Using the aforementioned proposition, the existence of a C∞
t,x smooth solu-

tion to (1.1) is immediate. Given the estimates for |fn(x)| and |f ′′n (x)|, the
estimates for the fourth derivative of fn(x) and further can be obtained by
differentiating the equation for fn in x. However, the smoothness in x implies
that the solution is smooth in t. This shows that the solution obtained by the
series expansion is infinitely differentiable in t and x, as claimed. To conclude
Theorem 2.1, only the uniqueness of the smooth solution must be obtained.

3.3. Uniqueness

In the aforementioned equation, an inhomogeneous estimate was obtained

∥F∥ ≤ C∥Q∥

for the solution of

Ft − Fxx = g(t, x)Q,

some absolute constant C > 0, with ∥ · ∥ defined as in (3.4) and g of size
O(1). In this estimate, it is crucial that F satisfies the boundary condition
F (t, 0) = F (t,∞) = 0.

Now, two solutions are assumed: Q1 and Q2, with finite ∥·∥–norm, satisfying

(Qi)t − (Qi)xx = εg(t, x)Qi,

with the same boundary conditions on x = 0 and x = ∞. Denoting the
difference by F = Q1 − Q2, the following is obtained: F (t, 0) = F (t,∞) = 0.
By applying the previous inhomogeneous estimate using the equation for F ,
the following equation is obtained:

∥F∥ ≤ Cε∥F∥.

When ε > 0 is smaller than C−1, this implies that ∥F∥ = 0, or Q1 = Q2. This
completes the proof of uniqueness.

4. Closed boundary layer equations

The issue (1.1) arises in the theory of the boundary layer of incompressible
recirculating flows. This is briefly explained below. Let us suppose a stationary
viscous incompressible fluid flow u = (u(x, y), v(x, y)) in a bounded closed
domain in R2. It is assumed that the flow circulates the wall boundary with
a velocity uw ̸= 0. Therefore, this becomes a moving boundary issue that is
different from the conventional boundary layer where uw = 0 (see Figure 1).

Now, the “Prandtl–Batchelor theory” in [1, 11] provides the asymptotic of
the incompressible Navier–Stokes flows for large Reynolds numbers (R). This
theory states that as R → ∞, the vorticity ω = vx − uy becomes a uniform
constant in the entire domain, except for the (thin) boundary layer near the
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D

w :wall velocityu

Figure 1. Circulating flow in a region D with nonzero wall
velocity [7]

wall. In fact, the entire flow is then determined by a complicated interaction
between the outer (almost inviscid) flow and inner (boundary layer) flow. (For
details, see [7, 8].) Therefore, the space-periodic boundary layer flow is crucial
for understanding the correct asymptotics and final state of the entire flow.

The steady two-dimensional boundary layer equation [10] is considered in the
s, η-coordinates where, s is the arc length along the wall, and η is the distance
normal to ∂D, measured from the wall toward the interior times

√
R. Let the

corresponding velocity coordinates be us, uη, that is, uη is the component in

the direction of the inward normal times
√
R. Then, the equations become

(4.1) us
∂us
∂s

+ uη
∂us
∂η

− qe(s)q
′
e(s)−

∂2us
∂η2

= 0,
∂us
∂s

+
∂uη
∂η

= 0.

Here, qe(s) denotes the limit inviscid flow speed at the outer edge of the bound-
ary layer. These equations hold true for 0 ≤ s < L, 0 ≤ η < ∞, where L is
the perimeter of D. Thereafter the equations can be rewritten as (4.1) in
the von Mises variables s, ψ̄, where ψ̄ is the scaled stream function defined by
−∇⊥ψ = u and ψ̄ =

√
Rψ. Setting us = q(s, ψ̄), (4.1) is reduced to a single

equation, in the form of

(4.2)
∂q2

∂s
− dq2e

ds
− q

∂2q2

∂ψ̄2
= 0.

The proper conditions for q(s, ψ̄) in (4.2) are given by

(4.3) q(s+ L, ψ̄) = q(s, ψ̄), q(s, 0) = qw(s), q(s,∞) = qe(s),

where qw(s) (the wall speed) is the same as us on ∂D.
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For the circular eddy, the limit vorticity ω0 can be evaluated by integrating
(4.2) twice on ψ̄. This is owing to the vanishing pressure term: −qeq′e in (4.2).
Consequently, the boundary condition at ψ = ∞ in (4.3) is specified, and the
following problem may be posed for Q := q2 − q2e :

Qt − qQxx = 0, 0 ≤ t ≤ 2π, 0 ≤ x ≤ ∞(4.4)

Q(t+ 2π, x) = Q(t, x), Q(t, 0) = q2w − q2e , Q(t,∞) = 0,(4.5)

where the notation t = s, x = ψ̄ to identify the variables in the previous sections
was introduced.

It is a challenge to establish the existence of the solution of the equation
owing to the periodicity requirement for Q in t (see Section 5). Therefore, the
appropriate approximate models pertaining to the characteristics of the original
boundary layer phenomenon are required. For instance, a simple possible choice
is the average mean velocity at x = 0, x = ∞ to advect Q; that is,

ψ(t) =

√
q2e +Q(t, 0) +

√
q2e +Q(t,∞)

2
,

which corresponds to the equation in (2.1) for ϕ = 1, g = 0. For another
approximate model, qe = 1 is taken for convenience and (4.2) is rewritten into
Qt =

√
1 +QQxx. Because the assumption is that |Q| is small, it is reasonable

to approximate

Qxx =
1√

1 +Q
Qt ≃

(
1− Q

2

)
Qt = Qt −

1

2
QtQ.

Then, simply writing Qt = 2εg(t, x), the following problem is obtained (1.1).
Note that this model provides an approximate advection effect by substitut-
ing QtQ with a linear term 2εg(t, x)Q and correctly matches the boundary
conditions at x = 0 and x = ∞ by considering the proper g.

5. Difficulties for a variable coefficient case

In Section 2, it was demonstrated that a certain variable coefficient case
can be successfully reduced to the constant coefficient case. However, this is
generally not so straightforward, as shown in the following example, which is
a slight perturbation of the constant coefficient case. The perturbed linear
problem is considered:

(5.1)


(1 + g(t, x))Qt −Qxx = 0,

Q(t, 0) = q0(t),

Q(t,∞) = 0

with a periodic boundary condition in t. This equation is a variation of (1.1)
and is regarded as an approximation of Qt =

√
1 +QQxx for small Q. Even

with very simple data, q0(t) = εeit and g(t, x) = e−µx+it, the existence of a
smooth solution to (5.1) can be demonstrated to be highly nontrivial. Here,
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ℜ(µ) > 0 and µ will be determined later (for easy computation). The following
expansion is considered:

Q(t, x) =
∑
n≥1

qn(x)e
int.(5.2)

From the boundary condition, the following is obtained: q1(0) = ε, q1(∞) = 0,
and qn(0) = qn(∞) = 0 for n ≥ 2. (It is demonstrated below that there is no
need to include terms of the form e−int with n ≥ 1 in the expansion.) The
following recurrence equations for qn can be obtained by plugging (5.2) into
(5.1):

i(nqn + (n− 1)e−µxqn−1) = q′′n, n ≥ 1.(5.3)

Initially, when n = 1, the following solution can be directly derived

q1(x) = εe−
√
ix,

√
i =

1 + i√
2
.

Further, the following simple computation is used, where the operator (∂2x −
ai)−1 is well-defined by imposing the zero boundary conditions at x = 0,∞.

Lemma 5.1. For a > 0, the following is obtained

(∂2x − ai)−1e−β
√
ix =

1

i

e−β
√
ix − e−

√
a
√
ix

β2 − a
.

Using the aforementioned lemma, in the case where n = 2,

(∂xx − 2i)q2 = ie−µxq1 = iεe(−µ−
√
i)x.

From β = 1 + µ√
i
, the following is obtained:

q2 =
ε

β2 − 2
(e(−µ−

√
i)x − e−

√
2
√
ix).

Continuing,

(∂xx − 3i)q3 = 2ie−µxq2 =
2iε

β2 − 2
(e(−2µ−

√
i)x − e−(

√
2
√
i+µ)x).

Then,

q3 =
ε

β2 − 2

(
A(µ)(e(−2µ−

√
i)x − e−

√
3
√
ix)−B(µ)(e−(

√
2
√
i+µ)x − e−

√
3
√
ix)
)
,

where A(µ), B(µ) are some constants.
To determine the rule for the sequence of functions qn, let ε = 1 for simplicity,

and the previous equation is rewritten in a better notation. First, let β1 =
1, a1 = 1 for the case n = 1. Then, for n = 2, let β2 = β1+

µ√
i
= 1+ µ√

i
, a2 = 2.

The solution can be written as:

q2 =
1

β2
2 − a2

(e−β2

√
ix − e−

√
a2

√
ix).
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Next, for n = 3, let β31 = β2 +
µ√
i
, β32 =

√
a2 +

µ√
i
, a3 = 3, and the equation

is rewritten as

q3 =
2

β2
2 − a2

[
1

β2
31 − a3

(e−β31

√
ix − e−

√
a3

√
ix)− 1

β2
32 − a3

(e−β32

√
ix − e−

√
a3

√
ix)

]
.

Therefore, now βnk can be written for k = 1, 2, . . . , 2n−2, and an for the corre-
sponding coefficients of qn in the form presented previously. From the previous
computation, a rule for determining qn from qn−1 is obtained. First, the num-

ber of terms of qn is 2n−1, of which only the coefficient of e−
√
n
√
ix is focused on,

which has the slowest decay mode in x. From this consideration, the following
can be derived:

βn1 = β(n−1)1 +
µ√
i
, βn1 = 1 +

µ√
i
(n− 1),

βn2 = βn4 = βn6 = · · · = βn(2n−1) =
√
n− 1 +

µ√
i

and

βn3 = β(n−1)2 +
µ√
i
=

√
n− 2 +

2µ√
i
, βn5 = β(n−1)3 +

µ√
i
, . . . .

Thus, a hierarchy of tables of coefficients of qn for n = 1, 2, . . . is achieved. To
simplify further, let µ =

√
i, which makes all the coefficients real and simple.

More precisely, the following equation is obtained:

βn1 = n, βn2 = βn4 = βn6 = · · · = βn(2n−1) =
√
n− 1 + 1

and

βn3 =
√
n− 2 + 2, βn5 = β(n−1)3 + 1, . . . .

However, it is difficult to determine the coefficients of qn (even asymptotically)
during this recurrence procedure. Notably, each βn(2k) =

√
n− 1 + 1, k =

1, . . . , 2n−2 gives rise to the factor 1/(β2
n(2k) − n) = 1/(2

√
n− 1) of e−

√
n
√
ix.

This suggests that the series (5.2) may not converge uniformly. Unfortunately,
each term on the right-hand side of the equation for (∂xx − ni)qn contributes

to the coefficient of e−
√
n
√
ix in qn, and there may be subtle cancellations that

can make the series (5.2) convergent. However, it should be emphasized that
even if the series converges, it cannot be proved using a direct norm estimate
similar to that used in Section 3.

6. Conclusion

In this study, a linear parabolic differential equation and its time-periodic
solution were considered under a non-trivial boundary condition. The existence
and uniqueness were established under certain conditions on the boundary data
and the coefficient. Moreover, a possible connection between the problem and
a closed and recirculating boundary layer flow was investigated. Even for a
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linear problem, the existence of a time-periodic solution becomes highly non-
trivial if the leading order coefficient is perturbed. The difficulty faced while
trying to construct a Fourier series solution for a simple example was further
demonstrated.

References

[1] G. K. Batchelor, On steady laminar flow with closed streamlines at large Reynolds num-
ber, J. Fluid Mech. 1 (1956), 177–190. https://doi.org/10.1017/S0022112056000123

[2] F. E. Browder, Existence of periodic solutions for nonlinear equations of evolution,

Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1100–1103. https://doi.org/10.1073/pnas.
53.5.1100

[3] M. Chen, X.-Y. Chen, and J. K. Hale, Structural stability for time-periodic one-

dimensional parabolic equations, J. Differential Equations 96 (1992), no. 2, 355–418.
https://doi.org/10.1016/0022-0396(92)90159-K

[4] N. Hirano, Existence of multiple periodic solutions for a semilinear evolution equation,

Proc. Amer. Math. Soc. 106 (1989), no. 1, 107–114. https://doi.org/10.2307/2047381
[5] R. Huang, Y. Wang, and Y. Ke, Existence of non-trivial nonnegative periodic solutions

for a class of degenerate parabolic equations with nonlocal terms, Discrete Contin. Dyn.
Syst. Ser. B 5 (2005), no. 4, 1005–1014. https://doi.org/10.3934/dcdsb.2005.5.1005

[6] Y. Ke, R. Huang, and J. Sun, Periodic solutions for a degenerate parabolic equation,

Appl. Math. Lett. 22 (2009), no. 6, 910–915. https://doi.org/10.1016/j.aml.2008.
06.047

[7] S.-C. Kim, On Prandtl-Batchelor theory of a cylindrical eddy: asymptotic study,

SIAM J. Appl. Math. 58 (1998), no. 5, 1394–1413. https://doi.org/10.1137/

S0036139996303282

[8] S.-C. Kim, On Prandtl-Batchelor theory of a cylindrical eddy: existence and unique-

ness, Z. Angew. Math. Phys. 51 (2000), no. 5, 674–686. https://doi.org/10.1007/
PL00001514

[9] G. M. Lieberman, Time-periodic solutions of quasilinear parabolic differential equations.

I. Dirichlet boundary conditions, J. Math. Anal. Appl. 264 (2001), no. 2, 617–638.
https://doi.org/10.1006/jmaa.2000.7145

[10] O. A. Oleinik and V. N. Samokhin, Mathematical models in boundary layer theory,

Applied Mathematics and Mathematical Computation, 15, Chapman & Hall/CRC, Boca
Raton, FL, 1999.
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