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THE GRADIENT FLOW EQUATION OF RABINOWITZ

ACTION FUNCTIONAL IN A SYMPLECTIZATION

Urs Frauenfelder

Abstract. Rabinowitz action functional is the Lagrange multiplier func-

tional of the negative area functional to a constraint given by the mean
value of a Hamiltonian. In this note we show that on a symplectization

there is a one-to-one correspondence between gradient flow lines of Rabi-
nowitz action functional and gradient flow lines of the restriction of the

negative area functional to the constraint. In the appendix we explain

the motivation behind this result. Namely that the restricted functional
satisfies Chas-Sullivan additivity for concatenation of loops which the

Rabinowitz action functional does in general not do.

1. Introduction

Assume that M is a manifold, and f, h : M → R are two smooth functions
such that 0 is a regular value of h. Then critical points of f restricted to
the hypersurface h−1(0) ⊂ M can be alternatively detected by the Lagrange
multiplier functional

F : M × R → R, (x, τ) 7→ f(x) + τh(x).

Indeed, if (x, τ) is a critical point of F , then x is a critical point of f |h−1(0)

and τ is referred to as the Lagrange multiplier. In [12] it is explained how
the Morse homology of the Lagrange multiplier functional coincides with the
singular homology of the constraint h−1 up to a degree shift by one, i.e., modulo
degree shift the Morse homologies of F and f |h−1(0) coincide. The proof of this
fact in [12] is on homology level and not on chain level. It is still a desideratum
to have a proof of this on chain level in the spirit of an adiabatic limit argument
as in [9, 13, 17]. While there is a natural one-to-one correspondence between
critical points of the two functionals this is in general not the case for the
gradient flow lines. If g is a Riemannian metric on M we consider the product
metric g ⊕ gR on M ×R where gR is the standard metric on R. Then gradient
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flow lines (x, τ) : R → M × R are solutions of the ODE

(1)

{
∂sx(s) +∇f(x(s)) + τ(s)∇h(x(s)) = 0,
∂sτ(s) + h(x(s)) = 0,

where s ∈ R and ∇ denotes the gradient with respect to the metric g on M .
On the other hand the gradient flow equation for the restriction f |h−1(0) with

respect to the restriction of the metric g to h−1(0) reads

(2)

{
∂sx(s) +∇f(x(s)) + τ(s)∇h(x(s)) = 0,
h(x(s)) = 0.

One can interpolate between the two gradient flow equations as follows. Con-
sider for ϵ > 0 the metric g ⊕ ϵgR on M × R. Then gradient flow lines of the
Lagrange multiplier functional F with respect to this metric are solutions of
the equation {

∂sx(s) +∇f(x(s)) + τ(s)∇h(x(s)) = 0,
ϵ∂sτ(s) + h(x(s)) = 0.

For ϵ = 1 this is (1) and for ϵ = 0 we recover (2).
In this note we consider the two gradient flow equations in an infinite di-

mensional set-up. Rabinowitz action functional is the Lagrange multiplier func-
tional of minus the area functional to the constraint given by vanishing of the
mean value of a Hamiltonian. Namely consider an exact symplectic manifold
(M,ω = dλ) and a smooth function H : M → R referred to as the Hamiltonian.
If S1 = R/Z is the circle we abbreviate by

L = C∞(S1,M)

the free loop space of M . Rabinowitz action functional is the Lagrange multi-
plier functional

AH : L × R → R, (u, τ) 7→ −
∫
S1

u∗λ+ τ

∫ 1

0

H(u(t))dt.

For the L2-metric on L obtained by integrating the family of Riemannian met-
rics ω(·, Jt·) on M , where Jt for t ∈ S1 is a time-dependent family of ω-
compatible almost complex structures gradient flow lines of AH are solutions
(u, τ) ∈ C∞(R× S1,M)× C∞(R,R) of the equation [6]

(3)

{
∂su(s, t) + Jt(u(s, t))

(
∂tu(s, t)− τ(s)XH(u(s, t))

)
= 0,

∂sτ(s) +
∫ 1

0
H(u(s, t))dt = 0,

where XH is the Hamiltonian vector field of H implicitly defined by the con-
dition

dH = ω(·, XH).

The energy of a solution (u, τ) of (3) is defined as

E(u, τ) =

∫ ∞

−∞

∫ 1

0

ω
(
∂su(s, t), Jt(u(s, t))∂su(s, t)

)
dtds+

∫ ∞

−∞
(∂sτ)

2ds.
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Note that since Jt is ω-compatible the energy is nonnegative but could be
infinite. We abbreviate by

M1 =
{
(u, τ) solution of (3), E(u, τ) < ∞

}
the moduli space of finite energy solutions of (3).

If we consider the restriction of minus the area functional u 7→ −
∫
u∗λ on L

to the constraint given by the vanishing of the mean value of H on free loops
we obtain the gradient flow equation

(4)

{
∂sv(s, t) + Jt(v(s, t))

(
∂tv(s, t)− τ(s)XH(v(s, t))

)
= 0,∫ 1

0
H(v(s, t))dt = 0.

In this case τ is uniquely determined by v, see Lemma 4.1. For solutions v of
(4) the energy is defined as

E(v) =

∫ ∞

−∞

∫ 1

0

ω
(
∂sv(s, t), Jt(v(s, t))∂sv(s, t)

)
dtds

and we abbreviate by

M2 =
{
v solution of (4), E(v) < ∞

}
the moduli space of finite energy solutions of (4).

In this paper we are studying the case where our symplectic manifold M =
R× Σ is the symplectization of a contact manifold Σ. Our Hamiltonian is the
map

H : R× Σ → R, (r, x) 7→ er − 1

and our family of ω-compatible almost complex structures Jt are additionally
required to be SFT-like. In this case we have a natural map

Ψ: M1 → M2.

Namely given (u, τ) ∈ M1 define

σu : R → R

by the condition that for s ∈ R it holds∫ 1

0

H
(
σu(s)∗u(s, t)

)
dt = 0.

Here we use the obvious R-action on R × Σ by translation of the first factor,
namely if r1, r2 ∈ R and x ∈ Σ, then

(r1)∗(r2, x) = (r1 + r2, x).

Explicitly, σu(s) can be computed as

σu(s) = − ln

(∫ 1

0

H(u(s, t))dt+ 1

)
.
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With this notion we define

Ψ(u, τ)(s, t) := σu(s)∗u(s, t), (s, t) ∈ R× S1.

Note that (u, τ) and Ψ(u, τ) have the same energy. Indeed, the energy of
a gradient flow line only depends on the action of its Omega limit sets and
because of the natural one-to-one correspondence between the Omega limit
sets of (u, τ) and Ψ(u, τ) this follows. In particular, the energy of Ψ(u, τ) is
finite and therefore the map Ψ is well-defined.

The main result of this paper is the following theorem.

Theorem A. The map Ψ: M1 → M2 is a bijection.

The proof of Theorem A consists of constructing a map

Φ: M2 → M1

and then showing that Φ is the inverse of Ψ. The construction of Φ uses an
existence and uniqueness result for a Kazdan-Warner equation. The proof of
Theorem A is carried out in Section 5.

In the Appendix the main motivation of the author to study this new ver-
sion of the gradient flow equation of Rabinowitz action functional is explained.
Namely the restriction of the negative area functional to the constraint given by
the mean value of the Hamiltonian is not only antiinvariant under time reversal
but satisfies as well Chas-Sullivan additivity and therefore a Floer homology
for this action functional should profit from both of these properties on chain
level and not just homology level.

Acknowledgements. The author would like to thank Joa Weber and the
anonymous referee for useful comments.

2. The symplectization of a contact manifold

In this section we recall the symplectization of a contact manifold to fix
notation. Assume that (Σ, λ) is a 2n−1-dimensional contact manifold, i.e., the
contact form λ is a one-form on Σ, such that

λ ∧ dλn−1 > 0.

We denote by R the Reeb vector field of λ on Σ implicitly defined by

dλ(R, ·) = 0, λ(R) = 1.

Abbreviate by

ξ = kerλ

the hyperplane plane distribution on TΣ referred to as the contact structure.
The restriction of dλ to ξ is symplectic, so that ξ becomes a symplectic vector
bundle over Σ of rank 2n−2. Choose a dλ-compatible almost complex structure
J on ξ, i.e., dλ(·, J ·), is a bundle metric on ξ. All these structures on Σ have
canonical extensions to its symplectization R × Σ. By abuse of notation we
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denote these canonical extensions by the same letters. Namely the one-form λ
gives rise to a one-form λ on the symplectization by setting

λr,x = erλx, (r, x) ∈ R× Σ.

In particular, if we identify Σ with {0} × Σ in the symplectization we recover
the contact form by restricting λ to Σ. Note that

ωr,x = dλr,x = erdλx + erdr ∧ λx

is a symplectic form on R× Σ. Using the splitting

Tr,x(R× Σ) = R× TxΣ, (r, x) ∈ R× Σ

we extend the Reeb vector field R and the hyperplane distribution ξ to T (R×Σ)
trivially on the R-factor. We extend J to an ω-compatible almost complex
structure on T (R× Σ) by the requirement that

JR = −∂r, J∂r = R,

i.e., J interchanges up to sign the Reeb vector field R and the Liouville vector
field ∂r. Such an ω-compatible almost complex structure on the symplectization
R×Σ is referred to as an SFT-like almost complex structure, since it is invariant
under the obvious R-action on R× Σ and preserves the symplectic splitting

T (R× Σ) = ξ ⊕ ⟨R, ∂r⟩.

We now consider the Hamiltonian

(5) H : R× Σ → R, (r, x) 7→ er − 1.

Note that

H−1(0) = Σ

and the Hamiltonian vector field XH of H implicitly defined by the condition
dH = ω(·, XH) just equals the Reeb vector field, i.e.,

XH = R.

3. A Kazdan Warner equation

In this section we discuss existence and uniqueness of solutions of a Kazdan
Warner equation [3, 15]. In the following we use this solution to construct the
map Φ.

We consider a smooth nonegative function b : R → [0,∞) with the property
that

||b||L1 =

∫ ∞

−∞
b(s)ds < ∞.

For the readers convenience we give in this section a proof of the following
theorem, which for experts of Kazdan Warner equations is probably known.
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Theorem 3.1. There exists a unique ρ ∈ W 2,2(R) solving the nonlinear second
order ODE

(6) ∂2
sρ = 1− e−ρ − b.

Moreover, this unique solution has the property to be nonnegative.

Before we can embark on the proof of the theorem we need various prepa-
rations.

Lemma 3.2. Suppose that ρ ∈ W 2,2(R) is a solution of (6). Then for every
s ∈ R we have

0 ≤ ρ(s) ≤ max
{
2 ln 2, 4||b||2L1

}
.

Proof. We first show that for every s ∈ R we have that ρ(s) is nonnegative. To
see that we argue by contradiction and assume that there exists s such that
ρ(s) < 0. Since ρ ∈ W 2,2(R) we have lims→±∞ ρ(s) = 0 and hence there has to
exist a point s0 at which attains ρ its global negative minimum, in particular
it holds that

ρ(s0) < 0, ∂2
sρ(s0) ≥ 0.

However, since b is nonnegative this contradicts (6). This shows that ρ is
nonnegative.

To show the upper bound we again argue by contradiction and assume that
there exists s ∈ R such that ρ(s) > max{2 ln 2, 4||b||2L1

}. Since ρ asymptotically
converges to zero, it has to attain its global maximum. Therefore there exists

µ > max
{
2 ln 2, 4||b||2L1

}
and s0 ∈ R such that

ρ(s0) = µ, ∂sρ(s0) = 0.

Since we have already shown that ρ is nonnegative it follows from (6) that

∂2
sρ ≥ −b

and therefore for every s > s0

(7) ∂sρ(s) =

∫ s

s0

∂2
sρ(σ)dσ ≥ −

∫ s

s0

b(σ)dσ ≥ −
∫ ∞

−∞
b(σ)dσ = −||b||L1 .

Define
s1 := min

{
s > s0 : ρ(s) = µ

2

}
the first instant after s0 where ρ attains the value µ

2 . Note that since ρ asymp-
totically converges to zero such an instant has to exist by the intermediate
value theorem. Moreover, since this is the first instant, where ρ attains the
value µ

2 after s0 again, we necessarily have

(8) ∂sρ(s1) ≤ 0.

Using (7) we estimate

µ

2
= −

∫ s1

s0

∂sρ(s)ds ≤
∫ s1

s0

||b||L1ds = ||b||L1(s1 − s0)
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and therefore we have

(9) s1 − s0 ≥ µ

2||b||L1

> 2||b||L1 .

By definition of s1 we have for every s ∈ [s0, s1]

ρ(s) ≥ µ

2
> ln 2

and therefore in view of (6)

∂2
sρ(s) ≥

1

2
− b, s ∈ [s0, s1].

This inequality together with (9) implies

∂sρ(s1) =

∫ s1

s0

∂2
sρ(s)ds

≥
∫ s1

s0

(
1

2
− b

)
ds

≥ s1 − s0
2

−
∫ ∞

−∞
bds

> ||b||L1 − ||b||L1

= 0

contradicting (8). This proves the lemma. □

Lemma 3.3. Assume that ρ ∈ W 2,2(R) is a solution of (6). Then

(10)

∫ ∞

−∞
e−ρ
(
b+ (∂sρ)

2
)
ds+

∫ ∞

−∞

(
1− e−ρ

)2
ds = ||b||L1 .

Proof. Using (6) we compute

(11) ∂2
s (ρ+e−ρ) = (1−e−ρ)∂2

sρ+e−ρ(∂sρ)
2 = (1−e−ρ)2+e−ρ

(
(∂sρ)

2+b
)
−b.

Since ρ ∈ W 2,2 it follows that

lim
s→±∞

∂s(ρ+ e−ρ) = lim
s→±∞

(1− e−ρ)∂sρ = 0

and therefore ∫ ∞

−∞
∂2
s (ρ+ e−ρ)ds = 0.

Hence (10) follows from integrating (11). □

Before stating the next lemma we first point out that since b is smooth and
has finite L1-norm it follows that it has as well finite L2-norm ||b||L2 .

Lemma 3.4. There exists a constant

c = c
(
||b||L1 , ||b||L2

)
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depending only on the L1-norm and L2-norm of b and which can be chosen
to depend continuously on these two norms such that for every solution ρ ∈
W 2,2(R) of (6) we have

||ρ||W 2,2 ≤ c.

Proof. We have

||ρ||2W 2,2 = ||∂2
sρ||2L2 + ||∂sρ||2L2 + ||ρ||2L2

and we estimate all three terms on the righthand side individually. In view of
(6) and (10) it holds that

(12) ||∂2
sρ||L2 ≤ ||1− e−ρ||L2 + ||b||L2 ≤

√
||b||L1 + ||b||L2 .

By convexity of the exponential function we have for every κ > 0

x ≤ κ(1− e−x)

1− e−κ
, x ∈ [0, κ].

In view of Lemma 3.2 there exists therefore a constant c1 = c1(||b||L1) depend-
ing continuously on ||b||L1 such that

ρ ≤ c1(1− e−ρ).

Therefore in view of (10) we have

(13) ||ρ||2L2 ≤ c21||b||L1 .

Using integration by parts and the Cauchy-Schwarz inequality we finally have

||∂sρ||2L2 ≤ ||ρ||L2 · ||∂2
sρ||L2

so that a uniform bound on the L2-norm of ∂sρ follows from (12) and (13).
This proves the lemma. □

We next explain that the moduli space of solutions of (6) is always regular.
For that purpose it is useful to interpret the moduli space of solutions as the
zero set of a smooth map between Hilbert spaces. Namely we consider

Fb : W
2,2(R) → L2(R), ρ 7→ ∂2

sρ+ e−ρ − 1 + b.

Then solutions of (6) correspond to the zeros of the map Fb. That the image
of Fb actually lies in L2(R) is the content of the following little lemma.

Lemma 3.5. Suppose ρ ∈ W 2,2(R). Then

∂2
sρ+ e−ρ − 1 + b ∈ L2(R).

Proof. Since b is smooth and in L1(R) by assumption it lies in L2(R). Because
ρ ∈ W 2,2(R) it is in particular continuous and uniformly bounded. Therefore
there exists a constant c = c(ρ) not depending on s such that

e−ρ(s) ≤ 1 + c|ρ(s)|, ∀ s ∈ R
and hence

||e−ρ − 1||L2 ≤ c||ρ||L2 ≤ c||ρ||W 2,2 .

This proves the lemma. □
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For any ρ ∈ W 2,2(R) the differential of Fb at ρ is the bounded linear operator

Dρ := dFb(ρ) : W
2,2(R) → L2(R), ξ 7→ ∂2

sξ − e−ρξ.

From the following proposition it follows that the moduli space of solutions of
(6) is always regular and consists of an isolated set of points.

Proposition 3.6. For any ρ ∈ W 2,2(R) the operator Dρ is an isomorphism
between W 2,2(R) and L2(R).

Proof. We prove the Proposition in four steps.
Step 1: Dρ is injective for every ρ ∈ W 2,2(R).
In order to prove Step 1 we assume that ξ is in the kernel of Dρ, i.e.,

Dρ(ξ) = 0.

We take the L2-inner product of Dρξ with ξ and obtain via integration by parts

0 = ⟨Dρξ, ξ⟩ =
∫ ∞

−∞
(∂2

sξ)ξds−
∫ ∞

−∞
e−ρξ2ds = −

∫ ∞

−∞
(∂sξ)

2ds−
∫ ∞

−∞
e−ρξ2ds

which implies that ξ = 0 and hence Dρ is injective.
Step 2: D0 : W

2,2(R) → L2(R) is an isomorphism.
In view of Step 1 it suffices to show that D0 is surjective. Pick η ∈ L2(R).

We have to find ξ ∈ W 2,2(R) such that

∂2
sξ(s)− ξ(s) = η(s), s ∈ R.

Applying the Fourier-Plancherel transform to this equation (see for instance

[16, pp. 188–189]) we obtain for the Fourier-Plancherel transforms ξ̂ and η̂ of
ξ respectively η the equation

η̂(s) = −s2ξ̂(s)− ξ̂(s), s ∈ R.
Abbreviating

ϕ : R → R, s 7→ − 1

1 + s2

we can rewrite this as
ξ̂ = ϕ · η̂.

Applying the Fourier-Plancherel transform once more to this identity, we finally
define ξ by

ξ(s) := ϕ̂ · η̂(−s), s ∈ R.
Then

D0ξ = η

and Step 2 is proved.
Step 3: Dρ is a Fredholm operator of index zero for every ρ ∈ W 2,2(R).
It follows from Step 2 that D0 is a Fredholm operator of index zero. Since

the property of being Fredholm is open, there exists ϵ > 0 such that each
bounded operator D : W 2,2(R) → L2(R) satisfying

||D −D0|| < ϵ
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is Fredholm of index zero. Here the norm denotes the operator norm. Suppose
that ρ ∈ W 2,2(R) choose a smooth cut-off function β : R → [0, 1] with the
property that

β(s) = 1, |s| ≥ T

for some T > 0 satisfying

||1− e−βρ||L∞ < ϵ.

We have the difference of operators

Dβρ −D0 : W
2,2(R) → L2(R), ξ 7→ (1− e−βρ)ξ.

Note that

||(Dβρ −D0)ξ||L2 ≤ ||1− e−βρ||L∞ ||ξ||L2 ≤ ϵ||ξ||W 2,2

so that we have

||Dβρ −D0|| ≤ ϵ

and therefore Dβρ is a Fredholm operator of index zero. We further have the
difference of operators

Dρ −Dβρ : W
2,2(R) → L2(R), ξ 7→ (e−βρ − e−ρ)ξ.

Since β equals one outside a compact subset of R the continuous function
e−βρ−e−ρ has compact support and therefore the operatorDρ−Dβρ is compact.
Since adding a compact operator to Fredholm operator gives still a Fredholm
operator of the same index we conclude that Dρ is a Fredholm operator of
index zero as well.

Step 4: We prove the Proposition.
By Step 3 we have

0 = indDρ = dimkerDρ − dim cokerDρ.

From Step 1 we know that Dρ is injective and therefore

dimkerDρ = 0.

Therefore we have

dim cokerDρ = 0

so that Dρ is surjective as well and therefore an isomorphism. This proves the
Proposition. □

We are finally in position to prove the main result of this section.

Proof of Theorem 3.1. We first discuss uniqueness. For that purpose let us
assume that ρ1, ρ2 ∈ W 2,2(R) both solve (6), i.e.,

∂2
sρ1 + e−ρ1 − 1 = b = ∂2

sρ2 + e−ρ2 − 1.

Their difference solves the second order ODE

(14) ∂2
s (ρ2 − ρ1) = e−ρ2

(
eρ2−ρ1 − 1

)
.
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Since ρ2 − ρ1 ∈ W 2,2(R) it converges asymptotically to zero. We want to show
that it is identically zero. To see that we argue by contradiction. Otherwise
if ρ2 − ρ1 were not constant zero there exists a local maximum of ρ2 − ρ1 at
which

(ρ2 − ρ1)(s0) > 0, ∂2
s (ρ2 − ρ1)(s0) ≤ 0

or a local minimum at which

(ρ2 − ρ1)(s0) < 0, ∂2
s (ρ2 − ρ1)(s0) ≥ 0.

Both of these contradict (14) and therefore ρ2 − ρ1 = 0, i.e., ρ2 = ρ1, and
uniqueness follows.

It remains to prove existence. For that purpose we introduce the following
subset of the closed interval

E =
{
r ∈ [0, 1] : F−1

rb (0) ̸= ∅
}
,

i.e., the set of all r ∈ [0, 1] for which there exists a solution ρ ∈ W 2,2(R) of the
ODE

(15) ∂2
sρ = 1− e−ρ − rb.

We first observe that 0 ∈ E, since indeed ρ = 0 is a solution of (15) for r = 0.
We next discuss that E is a closed subset of the interval [0, 1]. For that purpose
suppose that r∞ ∈ [0, 1] and there exists a sequence rν ∈ E with ν ∈ N such
that

lim
ν→∞

rν = r∞.

Since rν ∈ E, there exists ρν ∈ W 2,2(R) such that ρν is a solution of (15) for r =
rν . By Lemma 3.4 the W 2,2(R) norm of the sequence ρν is uniformly bounded.
Therefore by the Theorem of Banach Alaoglu there exists ρ ∈ W 2,2(R) such
that ρν converges weakly to ρ. The map ρ is then a solution of (15) for r = r∞.
In particular, r∞ ∈ E which shows that E is closed. We finally note that E is
open in view of Proposition 3.6 and the Implicit Function theorem. We have
checked that E is a nonempty, open and closed subset of the interval [0, 1] and
since the interval is connected it follows that

E = [0, 1].

In particular, 1 ∈ E and this means that there exists a solution ρ ∈ W 2,2(R) of
(15) for r = 1. This proves existence. That the solution is nonnegative follows
from Lemma 3.2. The theorem is proven. □

4. Construction of the map Φ

In this section we assume that M = R×Σ is the symplectization of a contact
manifold (Σ, λ), the Hamiltonian H : M → R is given by (5) and Jt is a smooth
family of SFT-like almost complex structures on M . The following lemma tells
us that for solutions v of (4) the Lagrange multiplier is just given by the area
of v. In particular, since v is a gradient flow line of minus the area functional
the Lagrange multiplier is a monotone increasing function.
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Lemma 4.1. Suppose that v is a solution of (4). Then the Lagrange multiplier
satisfies

τ(s) =

∫ 1

0

v∗sλ

for every s ∈ R, where vs = v(s, ·) : S1 → M .

Proof. We compute using (4)

0 =

∫ 1

0

dH(v)∂svdt

= −
∫ 1

0

dH(v)Jt(v)∂tvdt+ τ

∫ 1

0

dH(v)Jt(v)XH(v)dt

= −
∫ 1

0

ω(Jt(v)∂tv,XH)dt− τ

∫ 1

0

dH(v)∂rdt

= −
∫ 1

0

ω(∂tv, ∂r)dt− τ

∫ 1

0

(
H(v) + 1

)
dt

=

∫
S1

v∗λ− τ.

This proves the lemma. □

Suppose now that v ∈ M2. We define a smooth function

bv : R → R, s 7→ ∂s

∫ 1

0

v∗sλ.

Since v is a gradient flow line of minus the area functional we have

bv(s) ≥ 0

for every s ∈ R. Moreover, the L1-norm of bv is given by the energy of v, i.e.,

||bv||L1 = E(v).

By Theorem 3.1 there exists a unique solution ρv ∈ W 2,2(R) of the ODE

(16) ∂2
sρv = 1− e−ρv − bv.

Define
uv := (−ρv)∗v : R× S1 → M.

We claim that the tuple

wv :=

(
uv,

∫ 1

0

v∗λ+ ∂sρv

)
is a solution of the gradient flow equation (3). We compute using Lemma 4.1
and taking advantage that SFT-like almost complex structures are invariant
under the R-action on M = R× Σ

∂suv = ∂s(−ρv)∗v

= d(−ρv)∗∂sv − (∂sρv)∂r
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= −d(−ρv)∗J(v)

(
∂tv −

(∫ 1

0

v∗λ

)
XH(v)

)
+ (∂sρv)J(uv)XH(uv)

= −J(uv)

(
∂tuv −

(∫ 1

0

v∗λ

)
XH(uv)

)
+ (∂sρv)J(uv)XH(uv)

= −J(uv)

(
∂tuv −

(∫ 1

0

v∗λ+ ∂sρv

)
XH(uv)

)
.

This proves the first equation of the gradient flow equation (3). To check the
second equation in (3) we first note that for (r, x) ∈ R× Σ and ρ ∈ R we have

H
(
(−ρ∗)(r, x)

)
= H(r − ρ, x)

= er−ρ − 1

= e−ρ
(
er − eρ

)
= e−ρ

(
H(r, x) + 1− eρ

)
= e−ρH(r, x) + e−ρ − 1

and therefore we compute using (16) and the fact that the mean value of H(v)
vanishes according to (4)

∂s

(∫ 1

0

v∗λ+ ∂sρv

)
= bv + ∂2

sρv

= 1− e−ρv

= −e−ρv

∫ 1

0

H(v)dt+ 1− e−ρv

= −
∫ 1

0

H
(
(−ρv)∗v

)
dt

= −
∫ 1

0

H(uv)dt.

Therefore the second equation in (3) holds true as well. Note that bv is smooth
and therefore ρv as solution of the ODE (16) as well. Therefore wv is smooth.
Since the energy of a gradient flow line only depends on its Omega limit sets,
v and wv have the same energy. In particular, the energy of wv is finite. Hence
we have a well-defined map

Φ: M2 → M1

which is given for v ∈ M2 by

Φ(v) = wv.

5. Proof of the main result

Theorem A from the Introduction now follows from the following result.
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Theorem 5.1. The map Φ is inverse to the map Ψ.

Proof. We prove the theorem in two steps.
Step 1: We have Ψ ◦ Φ = id: M2 → M2, i.e., Φ is right inverse to Ψ.
Suppose that v ∈ M2. By construction both maps Ψ and Φ act via the

R-action on R × Σ. Therefore there exists a smooth function χ : R → R such
that

Ψ ◦ Φ(v) = χ∗v.

Since both v and χ∗v belong to the moduli space M2 we have

0 =

∫ 1

0

H(χ∗v)dt = eχ
∫ 1

0

H(v)dt+ eχ − 1 = eχ − 1

and therefore

χ = 0.

This proves that

Ψ ◦ Φ(v) = v

and hence Φ is right inverse to Ψ.
Step 2: We have Φ ◦Ψ = id: M1 → M1, i.e., Φ is left inverse to Ψ.
Suppose that (u, τ) ∈ M1. We abbreviate

v := Ψ(u, τ) = (σu)∗u,

where

σu = − ln

(∫ 1

0

H(u)dt+ 1

)
.

As solution of M2 the Lagrange multiplier for v is completely determined by v
according to Lemma 4.1. We can alternatively express it as well with the help
of τ and σu. Indeed, in view of v = (σu)∗u and the fact that (u, τ) is a solution
of (3) we obtain the formula

∂sv + J(v)
(
∂tv − (τ − ∂sσu)XH(v)

)
= 0.

Therefore in view of Lemma 4.1 we have∫ 1

0

v∗λ = τ − ∂sσu.

For the unique solution ρv ∈ W 2,2(R) of equation (16) we have

Φ(v) =

(
(−ρv)∗v,

∫ 1

0

v∗λ+ ∂sρv

)
=

(
(σu − ρv)∗u, τ − ∂sσu + ∂sρv

)
.

We abbreviate

χ := σu − ρv : R → R.
With this notion it holds that

(17)
(
(χ)∗u, τ − ∂sχ

)
= Φ ◦Ψ

(
u, τ
)
.
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Since both (u, τ) and Φ ◦Ψ(u, τ) are solutions of (3) we compute

∂2
sχ = ∂sτ − ∂s(τ − ∂sχ)(18)

= −
∫ 1

0

H(u)dt+

∫ 1

0

H(χ∗u)dt

= −
∫ 1

0

H(u)dt+ eχ
∫ 1

0

H(u)dt+ eχ − 1

=
(
eχ − 1

)(∫ 1

0

H(u)dt+ 1

)
.

We claim that the only solution of this problem is

(19) χ = 0.

To see that we first note that since H takes values in (−1,∞) we have

(20)

∫ 1

0

H(u)dt+ 1 > 0.

Since both (u, τ) and Φ ◦Ψ(u, τ) have finite energy we must have

lim
s→±∞

χ(s) = 0.

Hence if χ did not vanish identically it would attain a positive local maximum
or a negative local minimum, i.e., there would exist s0 ∈ R such that

χ(s0) > 0, ∂2
sχ(s0) ≤ 0

or
χ(s0) < 0, ∂2

sχ(s0) ≥ 0,

both contradicting (18) in view of (20). This proves (19). Plugging this equa-
tion into (17) we obtain

Φ ◦Ψ(u, τ) = (u, τ).

This proves Step 2 and hence the theorem follows. □

Appendix A. Symmetries and Chas-Sullivan additivity

In this appendix we give some motivation for exploring the restriction of
the area functional to the constraint given by the mean value of the Hamil-
tonian. We explain that the restriction has the same transformation behaviour
under the symmetries of the free loop space as Rabinowitz action functional
but additionally satisfies Chas-Sullivan additivity which the Rabinowitz action
functional does not.

If M is a manifold, we have an S1-action on the free loop space L =
C∞(S1,M) by reparametrization, namely if u ∈ L and r ∈ S1

r∗u(t) = u(t+ r), t ∈ S1.

Moreover, we have an involution

I : L → L, u 7→ u−,



390 U. FRAUENFELDER

where u− is the loop traversed backward

u−(t) = u(−t), t ∈ S1.

Combining the S1-action with the involution I we obtain an action of

O(2) = S1 ⋊ Z/2Z.
We further have an action of the monoid N on L by iteration. Namely if n ∈ N
and u ∈ L, we set

n∗u(t) = u(nt), t ∈ S1.

Again the N-action combines with the O(2)-action to an action of their semidi-
rect product O(2) ⋊ N. We extend these actions to L × R as follows. If
(u, τ) ∈ L × R

r∗(u, τ) = (r∗u, τ), r ∈ S1

I(u, τ) = (Iu,−τ),

n∗(u, τ) = (n∗u, nτ), n ∈ N.

Suppose now that (M,ω = dλ) is an exact symplectic manifold and H : M → R
is a smooth function. Then Rabinowitz action functional

AH : L × R, (u, τ) 7→ −
∫

u∗λ+ τ

∫ 1

0

H(u)dt

has the following transformation behaviour under these symmetries. If (u, τ) ∈
L × R, then

AH
(
r∗(u, τ)

)
= AH

(
u, τ
)
, r ∈ S1

AH
(
I(u, τ)

)
= −AH

(
u, τ
)
,

AH
(
n∗(u, τ)

)
= nAH

(
u, τ
)
, n ∈ N.

The restriction of minus the area functional to the constraint given by the mean
value of H satisfies the same transformation behaviour under these symmetries.
Namely abbreviate

LH = H−1(0),

where

H : L → R, u 7→
∫ 1

0

H(u)dt

is the mean value of H along a loop, we set

aH : LH → R, u 7→ −
∫

u∗λ.

Note that all the symmetries we discussed on the free loop space L keep the
subspace LH invariant and aH transforms as

aH(r∗u) = aH(u), r ∈ S1

aH(Iu) = −aH(u)

aH(n∗u) = naH(u), n ∈ N.
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A distinguishing feature of aH compared to AH however, is its behaviour under
concatenation of loops. Suppose that u, v ∈ L have the same starting and
endpoint, i.e., u(0) = v(0). In this case we define their concatenation

u#v(t) =

{
u(2t) 0 ≤ t ≤ 1

2 ,
v(2t− 1) 1

2 ≤ t ≤ 1.

Since the u and v have the same starting and ending point their concatenation
is continuous at t = 1

2 . On the other hand, in general it is not smooth at

t = 1
2 . However, we can interpret u#v as an element in L1,2 = W 1,2(S1,M)

the Hilbert manifold of W 1,2-loops. Note that the functionals aH and AH

canonically extend to W 1,2-loops. The concatenation product gives rise to
string topology on the free loop space as discovered by Chas and Sullivan [4].

Denote by L1,2
H the W 1,2-loops for which the mean value of the Hamiltonian

H vanishes. If u, v ∈ L1,2
H are two loops with common starting and endpoint

their concatenation u#v still lies in L1,2
H . The functional aH is Chas-Sullivan

additive with respect to concatenation in the following sense

aH(u#v) = aH(u) + aH(v).

For the Rabinowitz action functional AH this is not true in general. In fact
the question for Rabinowitz action functional is a bit more subtle since one
needs to specify how the Lagrange multiplier transforms under concatenation.
Suppose that (u, τ), (v, σ) ∈ L1,2 × R satisfy u(0) = v(0). We want to define

ρ = ρ(u, v, τ, σ) ∈ R

such that Chas-Sullivan additivity holds, i.e.,

AH(u#v, ρ) = AH(u, τ) +AH(v, σ).

Since the area functional is Chas-Sullivan additive this leads to the requirement

τ

∫ 1

0

H(u)dt+σ

∫ 1

0

H(v)dt = ρ

∫ 1

0

H(u#v)dt =
ρ

2

(∫ 1

0

H(u)dt+

∫ 1

0

H(v)dt

)
and therefore we need to define ρ by

ρ =
2τ
∫ 1

0
H(u)dt+ 2σ

∫ 1

0
H(v)dt∫ 1

0
H(u)dt+

∫ 1

0
H(v)dt

.

However, this is ill-defined when
∫ 1

0
H(u)dt+

∫ 1

0
H(v)dt = 0.

To the authors knowledge so far nobody directly defined product on Rabi-
nowitz Floer homology, but products can be defined on homologies isomorphic
to Rabinowitz Floer homology. So was it proved by Abbondandolo and Merry
that Rabinowitz Floer homology is isomorphic to Floer homology on the time-
energy extended phase space on which products can be defined [1]. Alterna-
tively following Cieliebak and Oancea one can define products on V-shaped
symplectic homology [8]. That V-shaped symplectic homology is isomorphic
to Rabinowitz Floer homology was proved in [7].
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That critical points of Rabinowitz action functional are not just periodic or-
bit going forward in time but as well backwards distinguishes it from Symplectic
homology [5,19] or Symplectic Field theory [10] and has interesting connection
to Poincaré duality [14] and Tate homology [2]. A distinguishing feature of the
action functional aH is that it satisfies both Chas-Sullivan additivity and an-
tiinvariance under time-reversal and therefore it should be possible to use this
functional to define some Tate version of a Fukaya category having as objects
a class of Legendrians of a contact manifold. Thinking of such a Fukaya cate-
gory as a kind of mathematical way for making sense of path integrals the Tate
property becomes very reminiscent of the Feynman-Stueckelberg interpretation
of a positron being an electron going backwards in time [11,18].
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