DOI QR코드

DOI QR Code

THE HARBOURNE-HIRSCHOWITZ CONDITION AND THE ANTICANONICAL ORTHOGONAL PROPERTY FOR SURFACES

  • Abel Castorena (Centro de Ciencias Matematicas Universidad Nacional Autonoma de Mexico, Campus Morelia) ;
  • Juan Bosco Frias-Medina (Instituto de Fisica y Matematicas Universidad Michoacana de San Nicolas de Hidalgo Edificio C-3, Ciudad Universitaria)
  • Received : 2022.03.03
  • Accepted : 2022.12.12
  • Published : 2023.03.01

Abstract

In this paper we give the first steps toward the study of the Harbourne-Hirschowitz condition and the anticanonical orthogonal property for regular surfaces. To do so, we consider the Kodaira dimension of the surfaces and study the cases based on the Enriques-Kodaira classification.

Keywords

Acknowledgement

We would like to thank Mustapha Lahyane for his comments to improve this work. Also, we thank the anonymous referees for their suggestions and remarks to improve the quality of this paper.

References

  1. M. Artebani, A. Garbagnati, and A. Laface, Cox rings of extremal rational elliptic surfaces, Trans. Amer. Math. Soc. 368 (2016), no. 3, 1735-1757. https://doi.org/10.1090/tran/6378
  2. L. Badescu, Algebraic Surfaces, Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4757-3512-3
  3. W. P. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven, Compact complex surfaces, second edition, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 4, Springer-Verlag, Berlin, 2004. https://doi.org/10.1007/978-3-642-57739-0
  4. A. Beauville, Complex Algebraic Surfaces, Cambridge University Press, Cambridge, 1996. https://doi.org/10.1017/CBO9780511623936
  5. N. Bin, Some examples of algebraic surfaces with canonical map of degree 20, C. R. Math. Acad. Sci. Paris 359 (2021), 1145-1153. https://doi.org/10.5802/crmath.267
  6. E. Bombieri, Canonical models of surfaces of general type, Inst. Hautes Etudes Sci. Publ. Math. No. 42 (1973), 171-219.
  7. I. V. Dolgachev, A brief introduction to Enriques surfaces, in Development of moduli theory-Kyoto 2013, 1-32, Adv. Stud. Pure Math., 69, Math. Soc. Japan, 2016. https://doi.org/10.2969/aspm/06910001
  8. J. B. Frias-Medina and M. Lahyane, Harbourne-Hirschowitz surfaces whose anticanonical divisors consist only of three irreducible components, Int. J. Math. 29 (2018), no. 12, 1850072, 19 pp. https://doi.org/10.1142/S0129167X18500726
  9. J. B. Frias-Medina and M. Lahyane, The effective monoids of the blow-ups of Hirzebruch surfaces at points in general position, Rend. Circ. Mat. Palermo (2) 70 (2021), no. 1, 167-197. https://doi.org/10.1007/s12215-020-00489-3
  10. R. Friedman and J. W. Morgan, Obstruction bundles, semiregularity, and Seiberg-Witten invariants, Comm. Anal. Geom. 7 (1999), no. 3, 451-495. https://doi.org/10.4310/CAG.1999.v7.n3.a1
  11. A. Gimigliano, Our thin knowledge of fat points, in The Curves Seminar at Queen's, Vol. VI (Kingston, ON, 1989), Exp. B, 50 pp, Queen's Papers in Pure and Appl. Math., 83, Queen's Univ., Kingston, ON, 1989.
  12. B. Harbourne, The geometry of rational surfaces and Hilbert functions of points in the plane, in Proceedings of the 1984 Vancouver conference in algebraic geometry, 95-111, CMS Conf. Proc., 6, Amer. Math. Soc., Providence, RI, 1986.
  13. B. Harbourne, Rational surfaces with K2 > 0, Proc. Amer. Math. Soc. 124 (1996), no. 3, 727-733. https://doi.org/10.1090/S0002-9939-96-03226-1
  14. B. Harbourne, Anticanonical rational surfaces, Trans. Amer. Math. Soc. 349 (1997), no. 3, 1191-1208. https://doi.org/10.1090/S0002-9947-97-01722-4
  15. A. Hirschowitz, Une conjecture pour la cohomologie des diviseurs sur les surfaces rationnelles generiques, J. Reine Angew. Math. 397 (1989), 208-213. https://doi.org/10.1515/crll.1989.397.208
  16. A. Hochenegger and D. Ploog, Rigid divisors on surfaces, Izv. Math. 84 (2020), no. 1, 146-185; translated from Izv. Ross. Akad. Nauk Ser. Mat. 84 (2020), no. 1, 163-206. https://doi.org/10.4213/im8721
  17. D. Huybrechts, Lectures on K3 surfaces, Cambridge Studies in Advanced Mathematics, 158, Cambridge University Press, Cambridge, 2016. https://doi.org/10.1017/CBO9781316594193
  18. A. L. Knutsen and A. F. Lopez, A sharp vanishing theorem for line bundles on K3 or Enriques surfaces, Proc. Amer. Math. Soc. 135 (2007), no. 11, 3495-3498. https://doi.org/10.1090/S0002-9939-07-08968-X
  19. D. Mumford, Lectures on curves on an algebraic surface, Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, NJ, 1966.
  20. B. Segre, Alcune questioni su insiemi finiti di punti in geometria algebrica, Univ. e Politec. Torino Rend. Sem. Mat. 20 (1960/1961), 67-85.