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RELATIVE ROTA-BAXTER SYSTEMS ON
LEIBNIZ ALGEBRAS

APURBA DAS AND SHUANGJIAN GUO

ABSTRACT. In this paper, we introduce relative Rota-Baxter systems on
Leibniz algebras and give some characterizations and new constructions.
Then we construct a graded Lie algebra whose Maurer-Cartan elements
are relative Rota-Baxter systems. This allows us to define a cohomology
theory associated with a relative Rota-Baxter system. Finally, we study
formal deformations and extendibility of finite order deformations of a
relative Rota-Baxter system in terms of the cohomology theory.

1. Introduction

In 1960, Baxter [3] introduced the notion of Rota-Baxter operators on asso-
ciative algebras in his study of fluctuation theory in probability. Rota-Baxter
operators have been found many applications, including in Connes-Kreimer’s
algebraic approach to the renormalization in perturbative quantum field theory
8]

The concept of Leibniz algebra was introduced by Bloh [4] and rediscovered
by Loday [18,20] in the study of the algebraic K-theory. Leibniz algebras have
been studied from different aspects. In particular, the integrals of Leibniz alge-
bras are studied in [5,9] and deformation quantization of Leibniz algebras was
considered in [12]. As the underlying structure of embedding tensor, Leibniz
algebras also have application in higher gauge theories, see [17,26] for more de-
tails. Recently, relative Rota-Baxter operators on Leibniz algebras were studied
n [28], which is the main ingredient in the study of the twisting theory and
the bialgebra theory for Leibniz algebras. Moreover, relative Rota-Baxter op-
erators on a Leibniz algebra can be seen as the Leibniz algebraic analogue of
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Poisson structures. Generally, Rota-Baxter operators can be defined on op-
erads, which results in a split of operands [1,24]. For more details on the
Rota-Baxter operator, see [16].

The deformation of algebraic structures began with the seminal work of
Gerstenhaber [14, 15] for associative algebras and followed by its extension to
Lie algebras by Nijenhuis and Richardson [21,22]. In general, the deformation
theory of algebras over binary quadratic operads was developed by Balavoine
[2]. Deformations of morphisms and O-operators (also called relative Rota-
Baxter operators) were developed in [10,13] and [27,29]. Rota-Baxter systems
as a generalization of a Rota-Baxter operator were introduced by Brzezinski
[6]. In a Rota-Baxter system, two operators are acting on the algebra and
satisfy some Rota-Baxter type identities. Generalized Rota-Baxter systems in
the presence of bimodule were introduced and their deformation theory was
studied by Das [11].

It is well known that Rota-Baxter operators on Lie algebras are closely re-
lated to solutions of the classical Yang-Baxter equation, whereas the classical
Yang-Baxter equation plays important role in many fields of mathematics and
mathematical physics [7,25]. In [28], Sheng and Tang introduced the classical
Leibniz Yang-Baxter equation, classical Leibniz r-matrices and triangular Leib-
niz bialgebras. Furthermore, they proved that a solution of the classical Leibniz
Yang-Baxter equation gives rise to a relative Rota-Baxter operator. Our main
objective in this paper is the notion of the relative Rota-Baxter system on
Leibniz algebras. A class of relative Rota-Baxter systems arise from Leibniz
Yang-Baxter pairs which are defined as pairs of elements r, s € g ® g satisfying
two equations similar to the classical Leibniz Yang-Baxter equation. Next, we
construct a graded Lie algebra which characterizes relative Rota-Baxter sys-
tems as its Maurer-Cartan elements. Using this characterization, we define the
cohomology associated with a relative Rota-Baxter system. Finally, we use this
cohomology to study deformations of relative Rota-Baxter systems.

The paper is organized as follows. In Section 2, we first recall Leibniz
algebras and their representations. Next, we introduce relative Rota-Baxter
systems on Leibniz algebras with respect to representation and give some
characterizations and new constructions. In Section 3, we emphasise relative
Rota-Baxter systems with respect to the regular representation. In Section
4, we construct a graded Lie algebra whose Maurer-Cartan elements are rela-
tive Rota-Baxter systems, which leads us to define cohomology for a relative
Rota-Baxter system. Finally, in Section 5, we consider formal deformations of
relative Rota-Baxter systems.

Throughout this paper, K is a field of characteristic zero and all vector
spaces, (multi)linear maps and tensor products are over K.
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2. Relative Rota-Baxter systems on Leibniz algebras with respect
to representation

In this section, we first recall Leibniz algebras and representations [18, 20].
Next, we introduce relative Rota-Baxter systems on Leibniz algebras with re-
spect to representation.

Definition 1. A Leibniz algebra is a vector space g together with a bilinear
operation [+, |4 : g ® g — g satisfying

[:U, [y, Z]g]g = [[xyy}g, Z]g + [y» [:C, Z]g]g for z,y,z € g.

Definition 2. A representation of a Leibniz algebra (g,[-,-]y) is a triple
(V, p%, pft), where V is a vector space, pl',p® : g — gl(V) are linear maps
such that the following equalities hold: for all z,y € g,

(1) p=([z, ylg) = [p"(2), P (W)],
(2) p"([z,yly) = [p"(x), p"(W)],
(3) pf(y) o ph(x) = —pf(y) o p™(x).

Let (g, [, ]) be a Leibniz algebra. Define the left multiplication L : g — gl(g)
and the right multiplication R : g — g¢l(g) by L,y = [z,yly and Ryy = [y, z],
for all ,y € g. Then (g, L, R) is a representation of (g, [, -]4), called the regular
representation. Define two linear maps L*, R* : ¢ — ¢l(g*) with z — L} and
x — R, respectively, by

<L;£7y> = _<£7 [wvy}9>7 <R;£7y> = _<§a [yax]g> for T,y €g, 5 S g*
Then it has been shown in [28] that (¢*, L*, —L* — R*) is a representation. This

is called the dual of the regular representation.

Definition 3. A quadratic Leibniz algebra is a Leibniz algebra (g,[-,]q)
equipped with a nondegenerate skew-symmetric bilinear form w € A?g* such
that the following invariant condition holds:

w(z, [y, 2]y) = w([z, 2]y + [2, 2], y) for z,y,z € g.
Proposition 2.1 ([28]). Let (g, [, |4, w) be a quadratic Leibniz algebra. Then
the map
whig— gt WH(@)(y) = wln,y) forzyeg
is an isomorphism from the reqular representation (g, L, R) to its dual repre-
sentation (g*, L*, —L* — R*).

In the following, we introduce and study relative Rota-Baxter systems on
Leibniz algebras with respect to representation.

Definition 4. (1) A relative Rota-Baxter system on (g, [-,-],) with respect to
the representation (V, p’, p®*) consists of a pair (R, S) of linear maps R, S :
V — g satisfying

[Ru, Rv]g = R(pL(Ru)v + pR(Sv)u),
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[Su. S0, = S(p" (Rujv + p" (Sv)u)

for u,v € V.
(2) A Rota-Baxter system on (g, [+, ]g) is a relative Rota-Baxter system on
(9, [, +]g) with respect to the regular representation.

Example 2.2. A relative Rota-Baxter operator [28] on (g, [-,-]4) With respect
to the representation (V, p%, pft) is a linear map R : V — g satisfying

[Ru, Rv], = R(p*(Ru)v + p"(Rv)u) for u,v € V.

Thus R is a relative Rota-Baxter operator if and only if the pair (R, R) is a
relative Rota-Baxter system.

Example 2.3. Consider the 2-dimensional Leibniz algebra (g, [+, -]) given with
respect to a basis {e1, ea} by

le1,e1] =0, [e1,e2] =0, [ea,e1] = €1, [ea, e2] = €.

Let {ef,e3} be the dual basis. Then R = (g1 a12), S = (p'}2) is a
relative Rota-Baxter system on (g, [-,-]) with respect to the representation
(¢*,L*,—L* — R*) if and only if
[Rej, Rej] = R(Lperej — Lgerei — Rer€f),
K3 J J
[Se;, Sej] = S(L}e;e;‘- — L’ge;ef - Rge;ef)7 1,7 =1,2.

It is straightforward to deduce that

0 0
Le, (e1,e2) = (e1,€2) <

00 ) Lt = enen) (
0 1
0 0

oo O
o= O+

Re,(e1,e2) = (€1, €2) < > ; Rey(er,e2) = (e1, €2) (

and

* * * * * _1
i eheg) = (ehe) (

0 * * % * ok 0
0 >7 L22(61762)(61762)< -1 0 )

o O

AR ) A I ACHE BN A )

We have
[ReT, Rel] = [a11e1 + az1e2,ar1e1 + aziez] = azi(ai1 + azi)er
and
R(L*ReTGT - LgeIéI - Rge;éf)

= — a1 (R(€}) + R(e3)) + baa(R(eD) + R(eB) + (brn + bar)R(ed)
= —azi(ar1e1 + aziez + arzer + azez) + bar(aiier + agies + ajzer + axes)
+ (b11 + ba1)(a12e1 + azzez)
((b11 + bo1)ar + (a11 + a12)(ba1 — a21))er
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+ ((b11 + b21)azz + (az1 + az2)(b21 — az21))ez,

[Sel, Sei] = [bire1 + bares, birer + barea] = bay (b1 + ba1)eq,
and
S( }F%e;ef - ge;ﬂei - Rgefeik)
—az1(R(e1) + R(e3)) + b1 (S(eq) + S(e3)) + (brr + ba1)S(e3)
= —azi(a11e1 + aziez + a1zer + agzez) + bay(brrer + bajes + biger + bazes)
+ (b11 + ba1)(b12€1 + bazez)
((b11 + bo1)b1a + (b11 + b12)b21 — (a11 + ai12)az:)eq
+ ((b11 + b21)baz + (b2 + b22)ba1 — (az1 + az2)az:)es.
Thus, we obtain

azi(air + az1) = (b11 + ba1)arz + (a11 + a12)(b21 — a21),
(b11 + b21)azz + (az1 + azz)(ba1 — az1) =0,
bo1(b11 + ba1) = (b11 + ba1)bia + (b11 + b12)ba1r — (a11 + a12)az,
(b11 + ba1)baz + (ba1 + b22)b21 — (a21 + aza)az = 0.
Similarly, we obtain
azi(ai2 + age) = baa(air + ara) + (bi2 + baz)asz,
baa(az1 + azz) + (b12 + baz)ass = 0,
b21(b12 + b2z) = baa(b11 + b12) + (b12 + ba2)bi2,
baa(ba1 + baz) + (b12 + baa)baa = 0, aga(ai2 + agz) = baa(bia + baz) =0,
ag (a1 + az1) = ag (a1 + aiz), —azz(az + az2) =0,
boo(b11 + b21) = aza(b11 + b12), —aza(ba1 + ba2) = 0.
By summarizing the above observations, we have the following.

(1) If agy = byy = 0 and ag; = by, then R = (g1t “¢*), S = (pi1 "82) is

a relative Rota-Baxter system on (g, [-,-]) with respect to the representation
(¢*,L*,—L* — R*) if and only if

(b1 — az1)a1z = (bia — az1)bi2 = 0,

azi(air + az1) = (b11 + ba1)aia,

b21(b11 + b21) = (b11 + b21)bio + (b1 + b12)b21 — (@11 + a12)as,
(2) If a2 = b22 7é 0 and a1 7é bgl, then R = (Z;} Z;g), S = (g;i 2;2) is
a relative Rota-Baxter system on (g, [-,-]) with respect to the representation

(¢*,L*,—L* — R*) if and only if

@11 = —a12 = —a21 = G2, b1 = —b1a = —bay = bao.

We will give some more examples of Rota-Baxter systems on Leibniz algebras
in the next section.
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In the following, we give some characterizations of relative Rota-Baxter sys-
tems. Let (V, p¥, p®) be a representation of a Leibniz algebra (g, [-,];). Then
there is a Leibniz algebra structure on g & g &V given by

[T+ 2o +u,y1 +y2 + 0] = (21, Y1l + [22,92]9 + pL(fﬂl)U + PR(?J2)U-

This is exactly the semidirect product if we consider the Leibniz algebra struc-
ture on g @ g and define its representation on V by pf(z; + x2)v = pF(z1)v
and pf(z1 +z2)v = pf(22)v.

Proposition 2.4. A pair (R, S) of linear maps from V to g is a relative Rota-
Bamtet system with respect to the representation (V, p~, p®) if and only if the
pair (R, S) of maps

R:igdgadV —gdgaV, x1+x2+ur— R(u)+0+0,

S:ghgdV 5 g®gdV, 31432 +u— 0+ S(u)+0,
is a Rota-Baxter system on the Leibniz algebra g ® g ® V.
Proof. For any x1,x2,y1,y2 € g and u,v € V, we have

[R(z1 + x4+ u), R(y1 + y2 +v)] = [R(u), R(v)]y +0+0
and

R([R(z1 + 22 +u),y1 + y2 + 0] + [21 + x2 +u, S(y1 + y2 +v)])
= R(p"(Ru)v + p(Sv)u) + 0 +0.

Similarly, we have

[S(21 4 @2 4+ u), S(y1 +y2 +v)] = 0+ [S(u), S(v)], +0
and
5(@@1 +aotu),yr +y2+ ]+ [x1 + a2+ u,g(yl + Yy + v)]
= 04 S(p"(Ru)v + p?(Sv)u) + 0.

Hence (R, S) is a relative Rota-Baxter system if and only if (R, S) is a Rota-
Baxter system. (I

Recall that a Nijenhuis operator on a Leibniz algebra (g, [, -]4) is a linear
map N : g — ¢ satisfying
[Nz, Nylg = N(IN(x),ylg + [z, N(y)lg = Nlz,ylg) forz,yeg.
The following result relates to relative Rota-Baxter systems and Nijenhuis op-
erators.

Proposition 2.5. A pair (R, S) of linear maps from V to g is a relative Rota-
Baxter system if and only if

Nr,s) = tgPgdV > gdgadV

oo o
o oo
o n
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s a Nijenhuis operator on the Leibniz algebra g & g ® V.
Proof. For any z1,x2,y1,Yy2 € g and u,v € V, by a simple calculation, we have
[N(r.s)(@1 + 91 + 1), N(r,s) (2 + y2 + )] = [R(u), R(v)]g + [S(u), S(v)]g + 0
and
Nir,s)([N(r,s)(x1+y1+u), 2 + y2 + v] + [21+y1+u, N 5) (22 +y2+0)]
— Ng,sylz1 +y1 +u, 22 + y2 +0])
= R(p"(Ru)v + pf(Sv)u) + S(p* (Ru)v + p™(Sv)u) + 0.
It follows that N(g gy is a Nijenhuis operator if and only if (R, S) is a relative
Rota-Baxter system. O

Definition 5. Let (V, p, p®) be a representation of a Leibniz algebra (g, [-, ],)-
Suppose that dim (g) = dim (V). A pair (®, ¥) of invertible linear maps from
g to V is said to be an invertible 1-cocycle system if they satisfy

D([z,yly) = p"(2)@(y) + (T 0 B(y))P(2),
U([z,ylg) = p" (@7 0 U(x))U(y) + p" (y) ¥ (2)
for z,y € g.

It follows from the above definition that (®,®) is an invertible 1-cocycle
system if and only if ® : ¢ — V is an invertible derivation.

Proposition 2.6. Let (V,pl, p®) be a representation of a Leibniz algebra
(g,[,°]g)- Suppose that dim(g) = dim(V). A pair (R,S) of invertible linear
maps from V to g is a relative Rota-Baxter system if and only if (R, S71) is
an invertible 1-cocycle system.

Proof. For any u,v € V and z,y € g, by taking R(u) = z, R(v) = y, the first
identity of Definition 5 is equivalent to

Rz, yly = p"(@)R 'y + pR((S7") o R (y))R Ma.

Similarly, for any u,v € V and z,y € g, by taking S(u) = z, S(v) = y, the
second identity of Definition 5 is equivalent to

ST ylg = pH (R o S7 @)y + oM (y)S e

It follows that (R, S) of invertible linear maps from V to g is a relative Rota-
Baxter system if and only if (R™!, S™!) is an invertible 1-cocycle system. [

Leibniz Yang-Baxter equation was introduced in [28] to understand relative
Rota-Baxter operators on Leibniz algebras. Here we extend this to the context
of relative Rota-Baxter systems.
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Definition 6. Let (g, [, ]4) be a Leibniz algebra. A Leibniz Yang-Baxter pair
is a pair of elements r,s € g ® g such that 7(r) = r, 7(s) = s satisfy the
following equations

[r12,713]g + [113, 712l — [112,723] — [513, 23] = 0,
[s12,713]g + [13, S12]g — [512, 823]¢ — [813, S23]¢ = 0.
The brackets are defined as
[r12,m13]g ZZ[ﬁfﬂ @712 @72, [r13,m12], ZZ[Tlﬂ/ﬁ] QT2 @r2,
[r12, 23] ZT1® [r2,71]g ® T2, [s13,723]4 ZS1®T1 [s2,72]g,

where r =Y r1®@ro=>.71 @72 and s =Y 81 ® 53 = Y 51 ® 52 and 7 is the
exchanging operator defined by 7(x @ y) = y ® x for any z,y € g.

Proposition 2.7. Let (g,[-,"]g,w) be a quadratic Leibniz algebra and R, S :
g* — g be two linear maps. Then (R,S) is a relative Rota-Baxter system on
(9, [ +]g) with respect to the representation (g*,L*,—L* — R*) if and only if
(Row?, Sow?) is a Rota-Bazter system on (g, [-,"]4)-

Proof. For any z,y € g, we have
Rowi([Row(x),yly + [, S 0 w(y)],)
= R(wh(LRowh(z)y) + wh(RSow”(y)x))
= R(L} Row! (z)¥ h( ) — Lgowh(y)wh(x) - R;owh(y)wh(x))'
Similarly, we have
S 0w ([Rowi(x),yly + [, 5 0w (y)]y)
= S(W(L Rows ()¥) + W Rsowi(y)T))
= S(L Rowh(_L)w ( ) — LSowh(y)w () — R}Eowu(y)wh(ﬂﬁ))-
Thus it follows that (Row?, Sow") is a Rota-Baxter system on (g, [-,],) if and
only if
[Ro wi(z), Row(y )]g = R(L Rowh(;c)w "(y) - Lgowu(y)wh(x) - Rz’owh(y)wh('x))?
[So Wh(ﬂc)» Sow ( )g = S(L} Row!i( )Wh( ) — Lgowh(y)wh(‘r) - Rgowh(y)wh(x))‘

Since w? is an isomorphism, these identities hold if and only if (R,S) is a
relative Rota-Baxter system on (g, [-,];) with respect to the representation
(¢*,L*,—L* — R*). O
Corollary 2.8. Let(g,[,]4,w) be a quadratic Leibniz algebra. Thenr,s € g®g
is a Leibniz Yang-Bazter pair in g if and only if (rfow?, sfow?) is a relative Rota-
Bagzter system on (g, [,],), where % : g* — g is defined by (r%(£),n) = (r,£@n)
for all €,m € g*, that is,

[r o (@), r* o wh(y)]y = 1 o wh([r o wh(@), g + [, 5% 0 W (y)]y),
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[s° 0 wi(z), 8" 0 wWi(y)]y = 5" 0 W ([ 0 wi(2), g + [z, 8% 0 Wi(y)]y).
3. Rota-Baxter systems

In this section, we mainly provide examples of Rota-Baxter systems on Leib-
niz algebras. As mentioned earlier, they are relative Rota-Baxter operators
with respect to the regular representation.

Example 3.1. Consider the three-dimensional Leibniz algebra (g, [+, -]4) given
with respect to a basis {e1, e, €3} by

[61761}97 = €3.
a1l aiz a3 bi1 b1z b1z \ |
Then R = (azl azy ass ), S = <b21 baz b23) is a Rota-Baxter system on (g, [, |¢)
azi az2 ass b31 b32 b33
if and only if
[Rei, Rejly = R([Rei, e5]q + [es, Sejlg),
[Sei, Sejlqg = S([Rei, ej]q + [€i, Sej]y) fori,j=1,2,3.

2
We have [Rel,R61]g = [CL1161 + as1es + a31€3,011€1 + ag1€2 + (13163] = ajieés
and

R([Relv 61}9 + [617 Sel]g)
= R([a11€1 + az1e2 + agies, e1]g + [e1, br1er + barea + baies]y)
= (a11 + b11)Res
= (a11 +bi1)aizer + (a1 + bi1)agses + (a11 + bir)aszes.
Thus, by [Req, Re1], = R([Re1, e1]q + [e1, Sei]y), we have
(a11 +bi1)arz =0, (a1; + bi1)azs =0, a}y = (a1 + bi1)ass.
Similarly, by [Se1, Se1]y = S([Rei,e1]y + [e1, Se1lq), we have
(a11 + b11)bis = 0, (a1 + bi1)bog = 0, b3y = (a1 + bi1)bss.
By considering other choices of e¢; and e;, we obtain
ajiaiz = bizazz, biza1z =0, biaazs =0,
b11b12 = b12b33, b12b13 =0, b12baz =0,
ajia13 = bizags, bizaiz =0, bizazs =0,
bi1b13 = b13bsz, b1zb1z =0, bi3bez =0,
a12a11 = a12033, a12a13 = 0, ajzazz =0,
bi2b11 = a12b33, ai2b13 =0, a12b23 =0,
a13a11 = a13a33, a13a13 = 0, ajzass =0,
bizbi1 = a13bs3, aizbiz =0, aizbeg =0,
aly =0, aly3 =0, ajpaiz =0, b3y =0, bis =0, biabyz = 0.

By summarizing the above observations, we have the following.
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0O 0 O
(].) If aj] = b11 = a12 = b12 = a1z = b13 = 0, then any R = (azl az2 a23),
azi a3z as3

0 0 0

S = (221 b22 Zzs) is a Rota-Baxter system on (g,[-,-]q) with respect to the
31 032 033

regular representation.

(2) If a1 = blg = ais = b13 =0 and ail = b11 75 0, ag3 = b23 = O, then any
a1 O 0 bll 0 0
R = (‘121 a2z @23 >, S = (b21 b2z bas > is a Rota-Baxter system on (g, [-,-])

@11
a1 aszz —5- bs1 by -5+

with respect to the regular representation.

We have seen that relative Rota-Baxter systems generalize relative Rota-
Baxter operators. In the following, we show that they also generalize Rota-
Baxter operators of arbitrary weight.

Definition 7. Let (g,[-,-];) be a Leibniz algebra. A lincar map R: g — ¢ is
said to be a Rota-Baxter operator of weight A if R satisfies

[Rz, Ryl, = R([Rz,yly + [z, Ryly + Az, yly) forz,y € g.

Proposition 3.2. Let (g,[-,]q) be a Leibniz algebra and R : g — g be a
Rota-Bagter operator of weight \. Then (R, R + Md) and (R + Md, R) are
Rota-Baater systems on (g, [-,-]q)-

Proof. For any x,y € g, we have
[R:c,Ry]g = R([Rx7y]g + [z,Ry]g + )\[a:,y]g)
= R([Rz,yly + [z, (R + Ald)yly)
and

[(R+ Ad)z, (R+ Md)yl,
= [Rz, Ry|y + ARz, yly + Alz, Ryly + Az, Myly
= R([Rz,yly + [z, Rylg + Az, ylg) + AlRz, ylg + Az, Rylg + [Az, Ayl
= (R4 Ald)([Rz, ylg + [z, (R + Ald)yl,)
= (R4 Md)([(R + Ald)z, yl, + [z, Ryl,).
Hence, (R, R+ M1d) and (R+ Ald, R) are Rota-Baxter systems on (g, [, -]¢). O
Let (g, [, ]4) be a Leibniz algebra. A linear map T": g — ¢ is said to be a left

g-linear map (resp. a right g-linear map) if T'[z,yl, = [z, Ty], (resp. Tz, yl, =
[Tz,yl,) for any x,y € g.

Lemma 3.3. Let (g,[-,-]y) be a Leibniz algebra. Suppose that R : g — g is
a left g-linear map and S : g — g is a right g-linear map. Then (R,S) is a
Rota-Baater system on (g, [-,-]4) if and only if

[, RoS(y)]y =0=[SoR(z),yly forz,yeg.
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Proof. For any =,y € g, we observe that
R([Rz,ylg + [z, Sylg) = [Rz, Ryly + [z, R o S(y)]y
and
S([Rz,ylg + [z, Sylg) = [Ro S(x), Ryly + [Sz, Syl,.
It follows from the above two identities that (R, S) is a Rota-Baxter system on
(9,1, ]4) if and only if
[z, RoS(y)ly =0=[SoR(x),yly forzyecy. O

A Leibniz algebra (g, [, ]4) is said to be nondegenerate if the bracket [-, ],
satisfies the following
[,y]g =0 for all y implies that « = 0,
[z,y]g =0 for all z implies that y = 0.
Corollary 3.4. Let (g,[-,-]y) be a nondegenerate Leibniz algebra. Let R: g — g
be a left g-linear map and S : g — g be a right g-linear map. Then (R, S) is a
Rota-Baater system on (g, [-,-]4) if and only if

RoS=SoR=0.

Another class of Rota-Baxter systems arises from twisted Rota-Baxter op-
erators. Let (g, [-,-]y) be a Leibniz algebra and o : g — ¢ be a Leibniz algebra
morphism.

Definition 8. A linear map R : g — ¢ is said to be a o-twisted Rota-Baxter
operator if R satisfies

(1) [Rz, Ryly, = R([Rx,y]y + [z, (0 0 R)y]y) forall z,y € g.

When o = Id, a o-twisted Rota-Baxter operator is nothing but a Rota-
Baxter operator.

Example 3.5. A differential Rota-Baxter Leibniz algebra of weight X is a
Leibniz algebra (g, [+, ]4) together with linear maps R, 0 : g — g satisfying the
following set of identities

(de) [va Ry]g = R([RI, y]g + [1‘, Ry]g + /\[x,y]g),
(dR2) Olz,yly = [0z, ylg + [x,0yly + A[0z, Oy]y,
(dR3) 0o R=1d.

Let (g, R, Q) be a differential Rota-Baxter Leibniz algebra of weight A. It follows
from (dR2) that the map

c:9—g, o(x)=x+X(x) forzegyg
is a Leibniz algebra morphism. On the other hand, (dR3) implies that
(coR)(x)=R(z)+ \x forzeyg.
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Furthermore, by (dR2), we get
[Rz, Ryly = R([Rz,yly + [z, (0 0 R)yly) for 2,y € g.
Hence, R is a o-twisted Rota-Baxter operator.

Proposition 3.6. Let R be a o-tuisted Rota-Baxter operator on a Leibniz
algebra (g,[-,-]4)- Then (R,o o R) is a Rota-Bazter system on (g, [, ]q)-

Proof. Note that condition Eq. (1) is the same as the first condition of a Rota-
Baxter system. To prove the second one, we observe that

[(0 © R)(t, (U o R)y}g = O'[R{E, Ry]g
= (00 R)([Rz,yly + [, (0 0 R)y]y)-
This shows that (R, o o R) is a Rota-Baxter system on (g, [-,]4)- O

Example 3.7. Let (W,[-,-]w) be the Witt Lie algebra generated by basis
elements {l,, }nez and the Lie bracket given by
L, ln]w = (m —n)lypayn for m,n € Z.

View this Lie algebra as a Leibniz algebra. Let ¢ € K be a nonzero scalar that
is not a root of unity. We define linear maps o, R : W — W by

1—
o(ln) = ¢"ly Rlla) = 1= qqn L, forn € Z.
Then o is a Leibniz algebra morphism. Moreover, it is easy to verify that R
satisfies

[R(lm), R(1)lw = R([R(Ln), ln]w + [lm, (6 © R)(In)]w) for m,n € Z.

Therefore, R is a o-twisted Rota-Baxter operator. Hence, (R, 0 o R) is a Rota-
Baxter system on W.

In [23] the authors introduced a notion of weak pseudotwistor on an associa-
tive algebra and showed that a weak pseudotwistor induces a new associative
algebra structure. A Rota-Baxter system on an associative algebra gives rise
to a weak pseudotwistor, hence a new associative algebra structure. This is not
true for Rota-Baxter systems on Leibniz algebras. However, if we concentrate
on Rota-Baxter operators, they induce a new Leibniz algebra structure via a
Leibniz analogue of weak pseudotwistor. Let us first recall the new Leibniz
algebra associated with a Rota-Baxter operator on a Leibniz algebra.

Let (g, [, ]4) be a Leibniz algebra, and R : g — g be a Rota-Baxter operator,
i.e., R satisfies

[Rz, Ryly = R([Rz,y| + [z, Ry]) for z,y €g.
Then the vector space g carries a new Leibniz algebra structure with bracket
[1'73”}{ = [R.T,y] + [vay} for T,y €g.

Here we give a new example of a Rota-Baxter operator on a Leibniz algebra
induced from a dialgebra [19].
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Definition 9. A dialgebra is a vector space D together with two bilinear
operations -,: D ® D — D satisfying the following identities
ad(bde)=(a4b)dec=a-(bF ¢),
(abb)de=at (b-c),
(adb)Fe=(abb)Fc=at (bF¢) for a,b,c€ D.
A dialgebra as above may be denoted by the triple (D,,}). Any asso-
ciative algebra is a dialgebra with both the bilinear maps coinciding with the

associative product. See Loday [19] for more examples of dialgebras.
It is known that a dialgebra (D, -, F) induced a Leibniz algebra by

[a,b]p :=akFb—b-da fora,be D.
The Leibniz algebra is called the Leibniz algebra induced from the dialgebra
(D,H,F).
Definition 10. Let (D,,F) be a dialgebra. A Rota-Baxter operator on D
consists of a linear map R : D — D satisfying

R(a) * R(b) = R(R(a) * b+ a* R(b))
for all a,b € D and * = .

The following proposition is easy to check.

Proposition 3.8. Let (D,-,F) be a dialgebra and R be a Rota-Bazter oper-
ator on it. Then R is a Rota-Baxter operator on the induced Leibniz algebra

(D’ ['7 ]D)

The Leibniz bracket [, |r induced from a Rota-Baxter operator R can be
understood in terms of the weak pseudotwistor on a Leibniz algebra.

Definition 11. Let (g, [-,-]4) be a Leibniz algebra with the Leibniz bracket
denoted by the product p. A linear map T : g ® g — g ® g is said to be a
weak pseudotwistor if there exist a linear map 7 : g R g ® g — g ® g ® g with
(m2®1Id) o7 =70 (2 ®1Id) and commuting the following diagram:

Td®u peId
I®gRg g®g g®g9®yg
y W
g9y T gRGRyg
gRgRg d®pu g®g Leld gRgRg

Here 112 : g® g — g® g is the flip map n12(z ®y) = y ® z. The map 7 is called
a weak companion of 7.

Proposition 3.9. Let (g,[,-]4) be a Leibniz algebra and T : g ® g — g ® g be
a weak pseudotwistor. Then (g, poT) is a new Leibniz algebra structure on g.
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Proof. We have
(poT)o(Id® (uoT))
=po(Id®@p)or
=po(p®@Id)or+ po(Id®pu)o(me@Id)or
— (o T)o((poT)@1d) + o (A& ) oo (3 @ 1d)
= (uoT)o((poT)®Id) + (noT)o(Id® (noT))o (m2@Id).
This shows that p o T defines a Leibniz bracket on g. ]

Proposition 3.10. Let (g,[-,-]5) be a Leibniz algebra and R : g — g be a
Rota-Baaxter operator on it. Then the map T : g ® g — g @ g defined by

T(z®y)=R(r) @y +z® R(y)
is a weak pseudotwistor on g. Consequently, g carries a new Leibniz algebra
structure with bracket [x,y|r = [Rz,ylq + [z, Ryly for z,y € g.
Proof. We define7:g®g®¢g—g®g® g by
T(x®y®z)=R(@)®@R(y)®z+ R(x) @y ® R(2)
+z® R(y) ® R(z) for z,y,z € g.

We will show that T is a weak pseudotwistor with a weak companion 7. First,
observe that

(me®Id)oT)(z®y® 2)
=Ry)®R(x)®z+y® R(x) ® R(2) + R(y) ® x ® R(z)
=7(yRzr®z)=(To(m2@1d)(z®y® 2).
Next, we have
(To(Md@uoT))(zRy® z)
= R(z) @ p(R(y) ® 2 +y © R(2)) + 2 ® p(R(y) ® R(2))
=((d@p)or)(r®y®2).
Similarly, we have
To((poT)®Id) =(p®Id)or.
Hence, the result follows. O
Remark 3.11. The notion of weak pseudotwistor on a Leibniz algebra is a gener-
alization of weak pseudotwistor on an associative algebra introduced by Panaite
and Oystaeyen [23]. In the associative context, a Rota-Baxter system induces a
weak pseudotwistor on the underlying associative algebra. It is remarked that

given a Leibniz algebra (g, [, ];) and a Rota-Baxter system (R,S) on g, the
map

T:g®g—9®g, T(x®y)=R)®y+2S(y)
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is not a weak pseudotwistor on g with weak companion
TrRy®z2)=Rx)R(Yy)®z+ R(z)®@y® S(2) + z® S(y) ® S(2)
as (ne ®@1Id) o7 # 70 (n12 @ 1d).

4. Maurer-Cartan characterization of relative Rota-Baxter systems

In the section, we construct a graded Lie algebra that characterizes relative
Rota-Baxter systems as Maurer-Cartan elements. Using this characterization,
we define the cohomology associated with a relative Rota-Baxter system. We
first recall some results from [2].

A permutation o € S, is called an (i,n — 4)-shuffle if o(1) < --- < o(4)
and o(i +1) < -+ < o(n). If i =0 or n we assume o = Id. The set of all
(i,n — i)-shuffles will be denoted by S(; ;).

Let M be a vector space. We consider the graded vector space

C*(M, M) = @nle”(M, M) = EBnZlHOIn(@@nM, M)

of multilinear maps on M. The Balavoine bracket is a degree —1 bracket on
the graded vector space C*(M, M) given by

[f,9]B = fog — (=1)Pgof

for f € CPYY(M, M), g € C9TY(M, M). Here fog € CP*4T1(M, M) is defined
by

p+1
fog =Y (-1)Viforg
k=1
with
(for g) (@1, -, Tprqr)
= Z (_1)df(-730(1)7--'7Ia(k—1)»g(~770(k)7~-‘7-770(k+q—1):-77k+q):-77k+q+1a'~-axp+q+1)-
0ES(k—1,q9)

Theorem 4.1 ([2]). With the above notations, (C*(M,M),[-,-]5) is a degree
—1 graded Lie algebra. In other words (C***(M,M),[-,-]5) is a graded Lie
algebra. Its Maurer-Cartan elements are precisely the Leibniz algebra structures
on M.

Let (V, pL, pf*) be a representation of a Leibniz algebra (g, [, ],). Consider
the semidirect product Leibniz algebra structure on g @ g & V. We denote the
corresponding Leibniz product by fi. Then f is a Maurer-Cartan element in
the graded Lie algebra (C*tY (g gd V,gDgd V), [, |B)-

Consider the graded vector subspace C*(V,g) C C*(¢g g V,gd g V)
given by

C*(V,g) == @p>1C"(V,g) = &p>1Hom(VE" g & g).
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Theorem 4.2. With the above notations, (C*(V,g),[[-,"]]) is a graded Lie al-
gebra, where the graded Lie bracket [[-,-]] : C™(V,g) x C"(V,g) — C™"(V, g)
is defined by

H(Pv Q)? (Plv Q/)H = (_1)m[[ﬁ7 (Pv Q)]Bv (P/a Q/)]B

for any (P,Q) € C™(V,g), (P',Q’") € C™"(V,g). Moreover, its Maurer-Cartan
elements are relative Rota-Baxter systems on the Leibniz algebra (g, [-,]4) with
respect to the representation (V, pr, p?).

Let Pry,Pry : ¢ ® g — ¢ denote the projection maps onto the first and
second factor, respectively. Then the explicit description of the above graded
Lie bracket is given by

Pri([[(P,Q), (P/v QM(v1, - -+, Vimin))

m
=Y > DEI)TP o) Va(e1)s PP (Vo) s Vo lhbn—1)Whtms - s Vmm)
k=10€SG—1.m

m
XY (D)D) TPy, Voth-2) (@ (Wakys -+ 5 Vo (han—2)) Vo (kin—1)
k=20€S(x_2,n,1)
Vktns -+ Umtn)
n
+ Z Z (=) EF =DM (1) P (v 1y, Ve 1ys P2 (P Wo(iys - - Vo (etm—1))) Vs sy
k=10€S(k_1,m)
s -,'Uern)
n
Z Z (71)(k+"71)m+1(71)613/('”6(1)7-~'7va(k—1)apR(Q('Ua(k)7---77)0(k—1+m)))vo(k+m)7
k=1 0€S(k—1,m,1),
o(k+m—1)=k+m
Ukt 1s - -+ s Urntn)
+ Z (71)m”+1(71)“[P(va(l)v s 77)0(771))7 P/(va<m+1)7 <3 Vo (m+n—1), 7}m+n]g

€S (m,n—1)

m
3 ) E TP (o Votn)s PUo(1)s s Uty Vs s Un)lg
k=10€S_1,n-1)

and
Pry(([(P,Q), (P, Q)](v1, - -+, Umin))

m
:Z Z (=1)E D17 Qg (1), - -, Vo (k=175 PX (P (Vo (k) - - -+ Vo (hprr—1))) Vit - -+ Ut

k=10€S(k—1.n)

m

+ Z Z (D" (=1)7 Qo) - - - > Vo (h=2), PT(Q Vork)s - - - » Vor(htn—2)) Vo (h+n—1)> V4
k=20€Sk_2n,1)

v avm+nr)
n
D (FDETI()TQ (Va1 -+ Ve (1) PP Wk - -5 Vo (hetm—1))) Vs g 5
k=1 0E€S(h_1,m)

.. :7-)'m,+'n)
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n
Z Z (=) FFn =DM DT (0, 1) s Vo (e1)s QW (k) - - - s Vor (ke 1-4m) ) Vor ()

k=1 0€SH_1,m,1),
o(k+m—1)=k+m

Vk+m+1; - - - 7v7n+n)

+ Z (=)™ =1)7[QVo(1), - - - s Vor(m) )s @ (Wo(met1)s - - -+ Vo(min—1)s Um-tnlg

€S (m,n-1)

+ Z Z (1) E D (=1)7[Q (Wahs - - - Vo(htn—2))s QUo(1)s - - -+ Var(ho1) Vit - - - V)] g

k=10€S(_1,n-1)

for any (P, Q) € C™(V,g), (P',Q") € C™(V,g).

Proof. The graded Lie algebra (C*(V,g),[[,"]]) is obtained via the derived
bracket [28]. First, consider the graded Lie algebra (C**l(g ® g ® V,g ®
g®V),[,]p). Since ji is the semidirect product Leibniz algebra structure
on the vector space g ® g ® V, we deduce that (C** (g g Vg g V),
[,/],d = [i,"]B) is a differential graded Lie algebra. Obviously C**1(V, g)
is an abelian subalgebra. Therefore, by the derived bracket construction, we
define a bracket on the shifted graded vector space C*(V, g) by

(P, @), (P, Q1] == (=1)"[d((P, @), (P, @]z = (=1)"[[z, (P, Q)], (P, Q)]

B =

for any (P,Q) € C™(V,g), (P',Q') € C™(V,g). The derived bracket [[-,]] is

closed on C*(V, g), which implies that (C*(V,g),[[-,]]) is a graded Lie algebra.
For (R, S) € CY(V,g), we have

Pri([[(R. S), (R, 9)]|(u,v)) = 2([Ru, Rv], — R(p" (Ru)v) — R(p™(Sv)u)),
Pra([[(R, ), (R, )]l(u,v)) = 2([Su, Sv]g = S(p" (Ru)v) — S(p"(Sv)u)).

Thus, (R, S) is a Maurer-Cartan element (i.e., [(R, S), (R, S)]] = 0) if and only
if (R, S) is a relative Rota-Baxter systems on g with respect to the representa-
tion (V, p¥, p®). The proof is finished. O

Thus, relative Rota-Baxter systems can be characterized as Maurer-Cartan
elements in a graded Lie algebra. It follows from the above theorem that if
(R, S) is a relative Rota-Baxter system, then d(p gy := [[(R, S),]] is a differen-
tial on C*(V,g) and makes the gLa (C*(V,g),[[:,-]]) into a differential graded
Lie algebra.

The cohomology of the cochain complex (C*(V, g),d(r,s)) is called the coho-
mology of the relative Rota-Baxter system (R, .S). We denote the corresponding
cohomology groups simply by H*(V, g).

The following theorem describes the Maurer-Cartan deformation of a relative
Rota-Baxter system.

Theorem 4.3. Let (R, S) be a relative Rota-Baxter system on a Leibniz algebra
(9,["]y) with respect to a representation (V,p%, p®). For any pair (R',S")
of linear maps from V to g, the pair of sums (R+ R',S + 5") is a relative
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Rota-Bazter system if and only if (R',S’) is a Maurer-Cartan element in the
differential graded Lie algebra (C*(V,g),[[-,-]],d(r,s)), i.e.,
[(R+R,S+5),(R+R,S+S5)]]=0
& dins(R,8) + 5[[(R, ), (R, 8] = 0.

5. Deformations of relative Rota-Baxter systems
5.1. Formal deformations

Let K[[t]] be the ring of power series in one variable ¢. For any K-linear space
V, let V[[t]] denote the vector space of formal power series in ¢ with coefficients
from V. If in addition, (g,[,]s) is a Leibniz algebra over K, then there is a
K{[[¢t]]-Leibniz algebra structure on g[[t]] given by

+oo +oo +oo
[Z A Zyjtj]g = Z Z [xi,yj]tk for all z;,y; € g.
i=0 §=0 k=0 i+j=Fk

Let (V, pL', p%) be a representation of the Leibniz algebra (g, [-,-]4). Then there
is a representation (V[[t]], p¥, pf*) of the K[[t]]-Leibniz algebra g[[t]]. Here p”
and pf are given by

400 ot ) +oo
PP ait) O vty = > ph() ()t
i=0 =0

k=0i+j=Fk
—+o00 —+o0 —+o0

PO S ait) (O ) =D > pf@i)(w)tF for all x; € g,v; € V.
=0 7=0 k=0i+j=k

Let (R, S) be a relative Rota-Baxter system on the Leibniz algebra (g, [-,]4)
with respect to the representation (V, p”, p*). We consider two power series

—+o0 —+oo
R, = Z‘ﬁiti and S; = Z6jtj, where R;, S, € Homg(V, g).
i=0 §=0

That is, both R; and S; are in Homg(V, ¢)[[t]]. Extend them to K][[t]]-linear
maps from V{[t]] to g[[t]]. We still denote them by the same symbols.

Definition 12. If R, = Y /% Rt and 5, = 3% &,/ with Ro = R, &g = S
satisfy

[Reu, Ryvly = Ri(p" (Reuw)v + p™(Spv)u),

[Seu, Spvlg = Si(p™ (Riw)v + p™(Siv)u)),

we say that (Ry, S¢) is a formal deformation of the relative Rota-Baxter system
(R,S).
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By expanding these equations and comparing coefficients of various powers
of t, we obtain for k > 0,

+oo
Z Z [Riu, Rjv]g Z Z R, (p" (Rju)v + p(S;0)u),

Ic—Oi-i—j—k k=0i+j=k
ZZGUGUQ—ZZG (Rju)v + p™(&,v)u)).
k=0i+j=k k=0i+j5=k

Both of these identities hold for k& = 0 as (R, S) is a relative Rota-Baxter
system. For k =1, we get
[Ru, Ryv],+[Riu, Rul, = Ry (p" (Ru)v+p (Sv)u)+ R(p" (Riu)v+pf (S 1v)u),
[Su, &1v],+[S1u, Sv], = &1 (p" (Ru)v+pT (Sv)u)+S(p" (Riu)v+p" (S1v)u
for u,v € V. These identities are equivalent to the single condition
[(R,S), (%1, 61)]] = 0.
As a consequence, we get the following.

Proposition 5.1. Let (R, = Zj:g Rit?, S, = j_:og &,t7) be a formal defor-
mation of a relative Rota-Bazter system (R, S) on the Leibniz algebra (g, [-,-]4)
with respect to a representation (V, p&, pft). Then (R1,S1) is a 1-cocycle in the
cohomology of the relative Rota-Bazter system (R, S), that is, d g, s)(R1,S1) =
0.

Definition 13. Let (R,S) be a relative Rota-Baxter system on the Leib-

niz algebra (g,[,];) with respect to a representation (V,p%,p®). The 1-

cocycle (R, &) is called the infinitesimal of the formal deformation (R, =
% Rt Sp = 3717 &;17) of the relative Rota-Baxter system (R, S).

Definition 14. Two formal deformations (R, S;) and (R}, S;) of a relative
Rota-Baxter system (R, S) on the Leibniz algebra (g, [, ]4) with respect to a
representation (V, p¥, pf) are said to be equivalent if there exist two elements
x,y € g and linear maps ¢;, ¢; € gl(g) and ¥; € gl(V') for i > 2 such that for

¢r = Idy + t(L, — +Z¢z iy =1Idy+t(L +ZWJ

1=2
—+o00
and ¢y = Idy +t(p"(x) — p"(y)) + D wit’,

the following conditions hold:

(1) [04(2), e(w)]g = ¢([2, wlg), [pe(2), pe(w)lg = pi([z, w]g);

) b = o (0n(2) ()
() (0" (=) = (2 (2)) ()
(iv) Rjo(u) = ¢t o Ri(u), S;ov(u) =0 Si(u)
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for all z,w € g and u € V.

By expanding the identities in (iv) and equating coefficients of ¢ from both
sides, we obtain

(R1,61)(u) — (R, &7)(u)
= [R(u), z]y — R(p™(y)u) — [z, R(u)]y + R(p" (x)u)
+[S(w),yly — S(p™(y)u) — [y, S(w)]g + S(p" (x)u)
= (d(r,s)(7,9))(w).

Thus, we have the following.

Theorem 5.2. The cohomology class of the infinitesimal of a formal deforma-
tion depends only on the equivalence class of the deformation.

5.2. Finite order deformations of a relative Rota-Baxter system

In this subsection, we introduce a cohomology class associated to any order
n deformation of a relative Rota-Baxter system, and show that an order n
deformation is extensible if and only if this cohomology class is trivial. Thus,
we call this cohomology class the obstruction class of the order n deformation
being extensible.

Definition 15. Let (R,S) be a relative Rota-Baxter system on a Leibniz
algebra (g, [, -],) with respect to a representation (V, p¥, pf*). If the finite sums

Ry=) Mt and S =) &;t/ with Ry=R, &=

i=0 =0

as K[[t]]/(#"*!)-module maps from V][[t]]/(t""!) to the Leibniz algebra
gllt]]/(¢"*1) satisfy

[Reu, Riv]y = Ri(p" (Ryw)o + p"t (Siv)u),
[Syu, Spv), = Si(p™ (Reu)v + pR(Spv)u)) for u,v €'V,

we say that (R, S:) is an order n deformation of the relative Rota-Baxter
system (R, S).

Definition 16. Let (R, S;) be an order n deformation of the relative Rota-
Baxter system (R, S) on a Leibniz algebra (g, [-,-]4) with respect to a represen-
tation (V, p¥, pf). If there exists a pair (R,41,S,11) of linear maps from V'
to g such that

(ﬁt == Rt + thrlsRnJrh gt - St + tn+16n+1)
is a deformation of order n 4 1, we say that (R, S¢) is extensible.

Let (R:,S;) be an order n deformation of the relative Rota-Baxter sys-
tem (R,S) on a Leibniz algebra (g,[-,];) with respect to a representation
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(V, p%, pft). Define an element Ob(g,,s,) € C?(V,g) by
1
(2) Obry,s0) = —3 S IR, 65), (R, 6;)]l.
itj=ntl,i,j>1

Proposition 5.3. The 2-cochain Obg, s,y is a 2-cocycle, that is,

d(r,s)(Ob(r,,s,)) = 0.
Proof. We have

d(r,s5)(Ob(r, .s,))
=3 Y RS, [0% &), 0%, )]

itj=n+1,4,5>1

Yo (MIR.S), (%R, 6)]], (%5, 8))]]

itj=nt1,i,5>1

= [[(%%, 64), [[(R, 9), (R, 6;)11)

DN =

1

=1 > [[[(Rir, Giy), (Riz, 63,)1], (R, 65)]]
i1+i2+j=n,i1,iz,j>1
- i > (%, 6:), [[(Ry1,65,), (R, 65)]]]]
i+j1+j2=n,i,51,j2>1
— Y 0.6, (0%, 8] (9%, &)
it jrk=nt1,,5,k>1
= 0.

The proof is finished. il

Definition 17. Let (R, S:) be an order n deformation of the relative Rota-
Baxter system (R,S) on a Leibniz algebra (g, [, ];) with respect to a repre-
sentation (V, p¥, pf). The cohomology class [Ob(r,,s,)] € H?(V, g) is called the
obstruction class for (R, S;) being extensible.

As a consequence of Eq. (2) and Proposition 5.3, we obtain the following.

Theorem 5.4. Let (R;,S;) be an order n deformation of the relative Rota-
Baagter system (R,S) on a Leibniz algebra (g,[-,]q) with respect to a repre-
sentation (V, p&, p®). Then (Ry, S;) is extensible if and only if the obstruction
class [Ob(g, s,)] is trivial.

Corollary 5.5. If H*(V,g) = 0, then every 1-cocycle in the cohomology of a
relative Rota-Baxter system (R,S) is the infinitesimal of some formal defor-
mation of (R, S).
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