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RELATIVE ROTA-BAXTER SYSTEMS ON

LEIBNIZ ALGEBRAS

Apurba Das and Shuangjian Guo

Abstract. In this paper, we introduce relative Rota-Baxter systems on

Leibniz algebras and give some characterizations and new constructions.
Then we construct a graded Lie algebra whose Maurer-Cartan elements

are relative Rota-Baxter systems. This allows us to define a cohomology
theory associated with a relative Rota-Baxter system. Finally, we study

formal deformations and extendibility of finite order deformations of a

relative Rota-Baxter system in terms of the cohomology theory.

1. Introduction

In 1960, Baxter [3] introduced the notion of Rota-Baxter operators on asso-
ciative algebras in his study of fluctuation theory in probability. Rota-Baxter
operators have been found many applications, including in Connes-Kreimer’s
algebraic approach to the renormalization in perturbative quantum field theory
[8].

The concept of Leibniz algebra was introduced by Bloh [4] and rediscovered
by Loday [18,20] in the study of the algebraic K-theory. Leibniz algebras have
been studied from different aspects. In particular, the integrals of Leibniz alge-
bras are studied in [5,9] and deformation quantization of Leibniz algebras was
considered in [12]. As the underlying structure of embedding tensor, Leibniz
algebras also have application in higher gauge theories, see [17,26] for more de-
tails. Recently, relative Rota-Baxter operators on Leibniz algebras were studied
in [28], which is the main ingredient in the study of the twisting theory and
the bialgebra theory for Leibniz algebras. Moreover, relative Rota-Baxter op-
erators on a Leibniz algebra can be seen as the Leibniz algebraic analogue of
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Poisson structures. Generally, Rota-Baxter operators can be defined on op-
erads, which results in a split of operands [1, 24]. For more details on the
Rota-Baxter operator, see [16].

The deformation of algebraic structures began with the seminal work of
Gerstenhaber [14, 15] for associative algebras and followed by its extension to
Lie algebras by Nijenhuis and Richardson [21,22]. In general, the deformation
theory of algebras over binary quadratic operads was developed by Balavoine
[2]. Deformations of morphisms and O-operators (also called relative Rota-
Baxter operators) were developed in [10,13] and [27,29]. Rota-Baxter systems
as a generalization of a Rota-Baxter operator were introduced by Brzeziński
[6]. In a Rota-Baxter system, two operators are acting on the algebra and
satisfy some Rota-Baxter type identities. Generalized Rota-Baxter systems in
the presence of bimodule were introduced and their deformation theory was
studied by Das [11].

It is well known that Rota-Baxter operators on Lie algebras are closely re-
lated to solutions of the classical Yang-Baxter equation, whereas the classical
Yang-Baxter equation plays important role in many fields of mathematics and
mathematical physics [7, 25]. In [28], Sheng and Tang introduced the classical
Leibniz Yang-Baxter equation, classical Leibniz r-matrices and triangular Leib-
niz bialgebras. Furthermore, they proved that a solution of the classical Leibniz
Yang-Baxter equation gives rise to a relative Rota-Baxter operator. Our main
objective in this paper is the notion of the relative Rota-Baxter system on
Leibniz algebras. A class of relative Rota-Baxter systems arise from Leibniz
Yang-Baxter pairs which are defined as pairs of elements r, s ∈ g⊗ g satisfying
two equations similar to the classical Leibniz Yang-Baxter equation. Next, we
construct a graded Lie algebra which characterizes relative Rota-Baxter sys-
tems as its Maurer-Cartan elements. Using this characterization, we define the
cohomology associated with a relative Rota-Baxter system. Finally, we use this
cohomology to study deformations of relative Rota-Baxter systems.

The paper is organized as follows. In Section 2, we first recall Leibniz
algebras and their representations. Next, we introduce relative Rota-Baxter
systems on Leibniz algebras with respect to representation and give some
characterizations and new constructions. In Section 3, we emphasise relative
Rota-Baxter systems with respect to the regular representation. In Section
4, we construct a graded Lie algebra whose Maurer-Cartan elements are rela-
tive Rota-Baxter systems, which leads us to define cohomology for a relative
Rota-Baxter system. Finally, in Section 5, we consider formal deformations of
relative Rota-Baxter systems.

Throughout this paper, K is a field of characteristic zero and all vector
spaces, (multi)linear maps and tensor products are over K.
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2. Relative Rota-Baxter systems on Leibniz algebras with respect
to representation

In this section, we first recall Leibniz algebras and representations [18, 20].
Next, we introduce relative Rota-Baxter systems on Leibniz algebras with re-
spect to representation.

Definition 1. A Leibniz algebra is a vector space g together with a bilinear
operation [·, ·]g : g ⊗ g → g satisfying

[x, [y, z]g]g = [[x, y]g, z]g + [y, [x, z]g]g for x, y, z ∈ g.

Definition 2. A representation of a Leibniz algebra (g, [·, ·]g) is a triple
(V, ρL, ρR), where V is a vector space, ρL, ρR : g → gl(V ) are linear maps
such that the following equalities hold: for all x, y ∈ g,

(1) ρL([x, y]g) = [ρL(x), ρL(y)],
(2) ρR([x, y]g) = [ρL(x), ρR(y)],
(3) ρR(y) ◦ ρL(x) = −ρR(y) ◦ ρR(x).

Let (g, [·, ·]) be a Leibniz algebra. Define the left multiplication L : g → gl(g)
and the right multiplication R : g → gl(g) by Lxy = [x, y]g and Rxy = [y, x]g
for all x, y ∈ g. Then (g, L,R) is a representation of (g, [·, ·]g), called the regular
representation. Define two linear maps L∗, R∗ : g → gl(g∗) with x 7→ L∗

x and
x 7→ R∗

x, respectively, by

⟨L∗
xξ, y⟩ = −⟨ξ, [x, y]g⟩, ⟨R∗

xξ, y⟩ = −⟨ξ, [y, x]g⟩ for x, y ∈ g, ξ ∈ g∗.

Then it has been shown in [28] that (g∗, L∗,−L∗−R∗) is a representation. This
is called the dual of the regular representation.

Definition 3. A quadratic Leibniz algebra is a Leibniz algebra (g, [·, ·]g)
equipped with a nondegenerate skew-symmetric bilinear form ω ∈ ∧2g∗ such
that the following invariant condition holds:

ω(x, [y, z]g) = ω([x, z]g + [z, x]g, y) for x, y, z ∈ g.

Proposition 2.1 ([28]). Let (g, [·, ·]g, ω) be a quadratic Leibniz algebra. Then
the map

ω♮ : g → g∗, ω♯(x)(y) = ω(x, y) for x, y ∈ g

is an isomorphism from the regular representation (g, L,R) to its dual repre-
sentation (g∗, L∗,−L∗ −R∗).

In the following, we introduce and study relative Rota-Baxter systems on
Leibniz algebras with respect to representation.

Definition 4. (1) A relative Rota-Baxter system on (g, [·, ·]g) with respect to
the representation (V, ρL, ρR) consists of a pair (R,S) of linear maps R,S :
V → g satisfying

[Ru,Rv]g = R(ρL(Ru)v + ρR(Sv)u),
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[Su, Sv]g = S(ρL(Ru)v + ρR(Sv)u)

for u, v ∈ V .
(2) A Rota-Baxter system on (g, [·, ·]g) is a relative Rota-Baxter system on

(g, [·, ·]g) with respect to the regular representation.

Example 2.2. A relative Rota-Baxter operator [28] on (g, [·, ·]g) with respect
to the representation (V, ρL, ρR) is a linear map R : V → g satisfying

[Ru,Rv]g = R(ρL(Ru)v + ρR(Rv)u) for u, v ∈ V.

Thus R is a relative Rota-Baxter operator if and only if the pair (R,R) is a
relative Rota-Baxter system.

Example 2.3. Consider the 2-dimensional Leibniz algebra (g, [·, ·]) given with
respect to a basis {e1, e2} by

[e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = e1.

Let {e∗1, e∗2} be the dual basis. Then R = ( a11 a12
a21 a22

) , S =
(
b11 b12
b21 b22

)
is a

relative Rota-Baxter system on (g, [·, ·]) with respect to the representation
(g∗, L∗,−L∗ −R∗) if and only if

[Re∗i , Re
∗
j ] = R(L∗

Re∗i
e∗j − L∗

Se∗j
e∗i −R∗

Se∗j
e∗i ),

[Se∗i , Se
∗
j ] = S(L∗

Re∗i
e∗j − L∗

Se∗j
e∗i −R∗

Se∗j
e∗i ), i, j = 1, 2.

It is straightforward to deduce that

Le1(e1, e2) = (e1, e2)

(
0 0
0 0

)
, Le2(e1, e2) = (e1, e2)

(
1 1
0 0

)
,

Re1(e1, e2) = (e1, e2)

(
0 1
0 0

)
, Re2(e1, e2) = (e1, e2)

(
0 1
0 0

)
,

and

L∗
e1(e

∗
1, e

∗
2) = (e∗1, e

∗
2)

(
0 0
0 0

)
, L∗

e2(e
∗
1, e

∗
2) = (e∗1, e

∗
2)

(
−1 0
−1 0

)
,

R∗
e1(e

∗
1, e

∗
2) = (e∗1, e

∗
2)

(
0 0
−1 0

)
, R∗

e2(e
∗
1, e

∗
2) = (e∗1, e

∗
2)

(
0 0
−1 0

)
.

We have

[Re∗1, Re
∗
1] = [a11e1 + a21e2, a11e1 + a21e2] = a21(a11 + a21)e1

and

R(L∗
Re∗1

e∗1 − L∗
Se∗1

e∗1 −R∗
Se∗1

e∗1)

= − a21(R(e
∗
1) +R(e∗2)) + b21(R(e

∗
1) +R(e∗2)) + (b11 + b21)R(e

∗
2)

= − a21(a11e1 + a21e2 + a12e1 + a22e2) + b21(a11e1 + a21e2 + a12e1 + a22e2)

+ (b11 + b21)(a12e1 + a22e2)

= ((b11 + b21)a12 + (a11 + a12)(b21 − a21))e1
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+ ((b11 + b21)a22 + (a21 + a22)(b21 − a21))e2,

[Se∗1, Se
∗
1] = [b11e1 + b21e2, b11e1 + b21e2] = b21(b11 + b21)e1,

and

S(L∗
Re∗1

e∗1 − L∗
Se∗1

e∗1 −R∗
Se∗1

e∗1)

= − a21(R(e
∗
1) +R(e∗2)) + b21(S(e

∗
1) + S(e∗2)) + (b11 + b21)S(e

∗
2)

= − a21(a11e1 + a21e2 + a12e1 + a22e2) + b21(b11e1 + b21e2 + b12e1 + b22e2)

+ (b11 + b21)(b12e1 + b22e2)

= ((b11 + b21)b12 + (b11 + b12)b21 − (a11 + a12)a21)e1

+ ((b11 + b21)b22 + (b21 + b22)b21 − (a21 + a22)a21)e2.

Thus, we obtain

a21(a11 + a21) = (b11 + b21)a12 + (a11 + a12)(b21 − a21),

(b11 + b21)a22 + (a21 + a22)(b21 − a21) = 0,

b21(b11 + b21) = (b11 + b21)b12 + (b11 + b12)b21 − (a11 + a12)a21,

(b11 + b21)b22 + (b21 + b22)b21 − (a21 + a22)a21 = 0.

Similarly, we obtain

a21(a12 + a22) = b22(a11 + a12) + (b12 + b22)a12,

b22(a21 + a22) + (b12 + b22)a22 = 0,

b21(b12 + b22) = b22(b11 + b12) + (b12 + b22)b12,

b22(b21 + b22) + (b12 + b22)b22 = 0, a22(a12 + a22) = b22(b12 + b22) = 0,

a22(a11 + a21) = a22(a11 + a12), −a22(a21 + a22) = 0,

b22(b11 + b21) = a22(b11 + b12), −a22(b21 + b22) = 0.

By summarizing the above observations, we have the following.
(1) If a22 = b22 = 0 and a21 = b21, then R = ( a11 a12

a21 0 ), S =
(
b11 b12
b21 0

)
is

a relative Rota-Baxter system on (g, [·, ·]) with respect to the representation
(g∗, L∗,−L∗ −R∗) if and only if

(b12 − a21)a12 = (b12 − a21)b12 = 0,

a21(a11 + a21) = (b11 + b21)a12,

b21(b11 + b21) = (b11 + b21)b12 + (b11 + b12)b21 − (a11 + a12)a21,

(2) If a22 = b22 ̸= 0 and a21 ̸= b21, then R = ( a11 a12
a21 a22

), S =
(
b11 b12
b21 b22

)
is

a relative Rota-Baxter system on (g, [·, ·]) with respect to the representation
(g∗, L∗,−L∗ −R∗) if and only if

a11 = −a12 = −a21 = a22, b11 = −b12 = −b21 = b22.

We will give some more examples of Rota-Baxter systems on Leibniz algebras
in the next section.
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In the following, we give some characterizations of relative Rota-Baxter sys-
tems. Let (V, ρL, ρR) be a representation of a Leibniz algebra (g, [·, ·]g). Then
there is a Leibniz algebra structure on g ⊕ g ⊕ V given by

[x1 + x2 + u, y1 + y2 + v] = [x1, y1]g + [x2, y2]g + ρL(x1)v + ρR(y2)u.

This is exactly the semidirect product if we consider the Leibniz algebra struc-
ture on g ⊕ g and define its representation on V by ρL(x1 + x2)v = ρL(x1)v
and ρR(x1 + x2)v = ρR(x2)v.

Proposition 2.4. A pair (R,S) of linear maps from V to g is a relative Rota-
Baxter system with respect to the representation (V, ρL, ρR) if and only if the

pair (R̃, S̃) of maps

R̃ : g ⊕ g ⊕ V → g ⊕ g ⊕ V, x1 + x2 + u 7→ R(u) + 0 + 0,

S̃ : g ⊕ g ⊕ V → g ⊕ g ⊕ V, x1 + x2 + u 7→ 0 + S(u) + 0,

is a Rota-Baxter system on the Leibniz algebra g ⊕ g ⊕ V .

Proof. For any x1, x2, y1, y2 ∈ g and u, v ∈ V , we have

[R̃(x1 + x2 + u), R̃(y1 + y2 + v)] = [R(u), R(v)]g + 0 + 0

and

R̃([R̃(x1 + x2 + u), y1 + y2 + v] + [x1 + x2 + u, S̃(y1 + y2 + v)])

= R(ρL(Ru)v + ρR(Sv)u) + 0 + 0.

Similarly, we have

[S̃(x1 + x2 + u), S̃(y1 + y2 + v)] = 0 + [S(u), S(v)]g + 0

and

S̃([R̃(x1 + x2 + u), y1 + y2 + v] + [x1 + x2 + u, S̃(y1 + y2 + v)]

= 0 + S(ρL(Ru)v + ρR(Sv)u) + 0.

Hence (R,S) is a relative Rota-Baxter system if and only if (R̃, S̃) is a Rota-
Baxter system. □

Recall that a Nijenhuis operator on a Leibniz algebra (g, [·, ·]g) is a linear
map N : g → g satisfying

[Nx,Ny]g = N([N(x), y]g + [x,N(y)]g −N [x, y]g) for x, y ∈ g.

The following result relates to relative Rota-Baxter systems and Nijenhuis op-
erators.

Proposition 2.5. A pair (R,S) of linear maps from V to g is a relative Rota-
Baxter system if and only if

N(R,S) =

 0 0 R
0 0 S
0 0 0

 : g ⊕ g ⊕ V → g ⊕ g ⊕ V
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is a Nijenhuis operator on the Leibniz algebra g ⊕ g ⊕ V .

Proof. For any x1, x2, y1, y2 ∈ g and u, v ∈ V , by a simple calculation, we have

[N(R,S)(x1 + y1 + u), N(R,S)(x2 + y2 + v)] = [R(u), R(v)]g + [S(u), S(v)]g + 0

and

N(R,S)([N(R,S)(x1+y1+u), x2 + y2 + v] + [x1+y1+u,N(R,S)(x2+y2+v)]

−N(R,S)[x1 + y1 + u, x2 + y2 + v])

= R(ρL(Ru)v + ρR(Sv)u) + S(ρL(Ru)v + ρR(Sv)u) + 0.

It follows that N(R,S) is a Nijenhuis operator if and only if (R,S) is a relative
Rota-Baxter system. □

Definition 5. Let (V, ρL, ρR) be a representation of a Leibniz algebra (g, [·, ·]g).
Suppose that dim (g) = dim (V ). A pair (Φ,Ψ) of invertible linear maps from
g to V is said to be an invertible 1-cocycle system if they satisfy

Φ([x, y]g) = ρL(x)Φ(y) + ρR(Ψ−1 ◦ Φ(y))Φ(x),
Ψ([x, y]g) = ρL(Φ−1 ◦Ψ(x))Ψ(y) + ρR(y)Ψ(x)

for x, y ∈ g.

It follows from the above definition that (Φ,Φ) is an invertible 1-cocycle
system if and only if Φ : g → V is an invertible derivation.

Proposition 2.6. Let (V, ρL, ρR) be a representation of a Leibniz algebra
(g, [·, ·]g). Suppose that dim(g) = dim(V ). A pair (R,S) of invertible linear
maps from V to g is a relative Rota-Baxter system if and only if (R−1, S−1) is
an invertible 1-cocycle system.

Proof. For any u, v ∈ V and x, y ∈ g, by taking R(u) = x,R(v) = y, the first
identity of Definition 5 is equivalent to

R−1[x, y]g = ρL(x)R−1y + ρR((S−1)−1 ◦R−1(y))R−1x.

Similarly, for any u, v ∈ V and x, y ∈ g, by taking S(u) = x, S(v) = y, the
second identity of Definition 5 is equivalent to

S−1[x, y]g = ρL((R−1)−1 ◦ S−1(x))S−1y + ρR(y)S−1x.

It follows that (R,S) of invertible linear maps from V to g is a relative Rota-
Baxter system if and only if (R−1, S−1) is an invertible 1-cocycle system. □

Leibniz Yang-Baxter equation was introduced in [28] to understand relative
Rota-Baxter operators on Leibniz algebras. Here we extend this to the context
of relative Rota-Baxter systems.
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Definition 6. Let (g, [·, ·]g) be a Leibniz algebra. A Leibniz Yang-Baxter pair
is a pair of elements r, s ∈ g ⊗ g such that τ(r) = r, τ(s) = s satisfy the
following equations

[r12, r13]g + [r13, r12]g − [r12, r23]g − [s13, r23]g = 0,

[s12, r13]g + [r13, s12]g − [s12, s23]g − [s13, s23]g = 0.

The brackets are defined as

[r12, r13]g =
∑

[r1, r̂1]g ⊗ r2 ⊗ r̂2, [r13, r12]g =
∑

[r1, r̂1]g ⊗ r̂2 ⊗ r2,

[r12, r23]g =
∑

r1 ⊗ [r2, r̂1]g ⊗ r̂2, [s13, r23]g =
∑

s1 ⊗ r1 ⊗ [s2, r2]g,

where r =
∑
r1 ⊗ r2 =

∑
r̂1 ⊗ r̂2 and s =

∑
s1 ⊗ s2 =

∑
ŝ1 ⊗ ŝ2 and τ is the

exchanging operator defined by τ(x⊗ y) = y ⊗ x for any x, y ∈ g.

Proposition 2.7. Let (g, [·, ·]g, ω) be a quadratic Leibniz algebra and R,S :
g∗ → g be two linear maps. Then (R,S) is a relative Rota-Baxter system on
(g, [·, ·]g) with respect to the representation (g∗, L∗,−L∗ − R∗) if and only if
(R ◦ ω♮, S ◦ ω♮) is a Rota-Baxter system on (g, [·, ·]g).

Proof. For any x, y ∈ g, we have

R ◦ ω♮([R ◦ ω♮(x), y]g + [x, S ◦ ω♮(y)]g)

= R(ω♮(LR◦ω♮(x)y) + ω♮(RS◦ω♮(y)x))

= R(L∗
R◦ω♮(x)ω

♮(y)− L∗
S◦ω♮(y)ω

♮(x)−R∗
S◦ω♮(y)ω

♮(x)).

Similarly, we have

S ◦ ω♮([R ◦ ω♮(x), y]g + [x, S ◦ ω♮(y)]g)

= S(ω♮(LR◦ω♮(x)y) + ω♮(RS◦ω♮(y)x))

= S(L∗
R◦ω♮(x)ω

♮(y)− L∗
S◦ω♮(y)ω

♮(x)−R∗
S◦ω♮(y)ω

♮(x)).

Thus it follows that (R ◦ω♮, S ◦ω♮) is a Rota-Baxter system on (g, [·, ·]g) if and
only if

[R ◦ ω♮(x), R ◦ ω♮(y)]g = R(L∗
R◦ω♮(x)ω

♮(y)− L∗
S◦ω♮(y)ω

♮(x)−R∗
S◦ω♮(y)ω

♮(x)),

[S ◦ ω♮(x), S ◦ ω♮(y)]g = S(L∗
R◦ω♮(x)ω

♮(y)− L∗
S◦ω♮(y)ω

♮(x)−R∗
S◦ω♮(y)ω

♮(x)).

Since ω♮ is an isomorphism, these identities hold if and only if (R,S) is a
relative Rota-Baxter system on (g, [·, ·]g) with respect to the representation
(g∗, L∗,−L∗ −R∗). □

Corollary 2.8. Let (g, [·, ·]g, ω) be a quadratic Leibniz algebra. Then r, s ∈ g⊗g
is a Leibniz Yang-Baxter pair in g if and only if (r♮◦ω♮, s♮◦ω♮) is a relative Rota-
Baxter system on (g, [·, ·]g), where r♮ : g∗ → g is defined by ⟨r♮(ξ), η⟩ = ⟨r, ξ⊗η⟩
for all ξ, η ∈ g∗, that is,

[r♮ ◦ ω♮(x), r♮ ◦ ω♮(y)]g = r♮ ◦ ω♮([r♮ ◦ ω♮(x), y]g + [x, s♮ ◦ ω♮(y)]g),
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[s♮ ◦ ω♮(x), s♮ ◦ ω♮(y)]g = s♮ ◦ ω♮([r♮ ◦ ω♮(x), y]g + [x, s♮ ◦ ω♮(y)]g).

3. Rota-Baxter systems

In this section, we mainly provide examples of Rota-Baxter systems on Leib-
niz algebras. As mentioned earlier, they are relative Rota-Baxter operators
with respect to the regular representation.

Example 3.1. Consider the three-dimensional Leibniz algebra (g, [·, ·]g) given
with respect to a basis {e1, e2, e3} by

[e1, e1]g = e3.

Then R =
(

a11 a12 a13
a21 a22 a23
a31 a32 a33

)
, S =

(
b11 b12 b13
b21 b22 b23
b31 b32 b33

)
is a Rota-Baxter system on (g, [·, ·]g)

if and only if

[Rei, Rej ]g = R([Rei, ej ]g + [ei, Sej ]g),

[Sei, Sej ]g = S([Rei, ej ]g + [ei, Sej ]g) for i, j = 1, 2, 3.

We have [Re1, Re1]g = [a11e1 + a21e2 + a31e3, a11e1 + a21e2 + a31e3] = a211e3
and

R([Re1, e1]g + [e1, Se1]g)

= R([a11e1 + a21e2 + a31e3, e1]g + [e1, b11e1 + b21e2 + b31e3]g)

= (a11 + b11)Re3

= (a11 + b11)a13e1 + (a11 + b11)a23e2 + (a11 + b11)a33e3.

Thus, by [Re1, Re1]g = R([Re1, e1]g + [e1, Se1]g), we have

(a11 + b11)a13 = 0, (a11 + b11)a23 = 0, a211 = (a11 + b11)a33.

Similarly, by [Se1, Se1]g = S([Re1, e1]g + [e1, Se1]g), we have

(a11 + b11)b13 = 0, (a11 + b11)b23 = 0, b211 = (a11 + b11)b33.

By considering other choices of ei and ej , we obtain

a11a12 = b12a33, b12a13 = 0, b12a23 = 0,

b11b12 = b12b33, b12b13 = 0, b12b23 = 0,

a11a13 = b13a33, b13a13 = 0, b13a23 = 0,

b11b13 = b13b33, b13b13 = 0, b13b23 = 0,

a12a11 = a12a33, a12a13 = 0, a12a23 = 0,

b12b11 = a12b33, a12b13 = 0, a12b23 = 0,

a13a11 = a13a33, a13a13 = 0, a13a23 = 0,

b13b11 = a13b33, a13b13 = 0, a13b23 = 0,

a212 = 0, a213 = 0, a12a13 = 0, b212 = 0, b213 = 0, b12b13 = 0.

By summarizing the above observations, we have the following.
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(1) If a11 = b11 = a12 = b12 = a13 = b13 = 0, then any R =
(

0 0 0
a21 a22 a23
a31 a32 a33

)
,

S =
( 0 0 0

b21 b22 b23
b31 b32 b33

)
is a Rota-Baxter system on (g, [·, ·]g) with respect to the

regular representation.
(2) If a12 = b12 = a13 = b13 = 0 and a11 = b11 ̸= 0, a23 = b23 = 0, then any

R =

(
a11 0 0
a21 a22 a23

a31 a32
a11
2

)
, S =

(
b11 0 0
b21 b22 b23
b31 b32

b11
2

)
is a Rota-Baxter system on (g, [·, ·]g)

with respect to the regular representation.

We have seen that relative Rota-Baxter systems generalize relative Rota-
Baxter operators. In the following, we show that they also generalize Rota-
Baxter operators of arbitrary weight.

Definition 7. Let (g, [·, ·]g) be a Leibniz algebra. A linear map R : g → g is
said to be a Rota-Baxter operator of weight λ if R satisfies

[Rx,Ry]g = R([Rx, y]g + [x,Ry]g + λ[x, y]g) for x, y ∈ g.

Proposition 3.2. Let (g, [·, ·]g) be a Leibniz algebra and R : g → g be a
Rota-Baxter operator of weight λ. Then (R,R + λId) and (R + λId, R) are
Rota-Baxter systems on (g, [·, ·]g).

Proof. For any x, y ∈ g, we have

[Rx,Ry]g = R([Rx, y]g + [x,Ry]g + λ[x, y]g)

= R([Rx, y]g + [x, (R+ λId)y]g)

= R([(R+ λId)x, y]g + [x,Ry]g)

and

[(R+ λId)x, (R+ λId)y]g

= [Rx,Ry]g + λ[Rx, y]g + λ[x,Ry]g + [λx, λy]g

= R([Rx, y]g + [x,Ry]g + λ[x, y]g) + λ[Rx, y]g + λ[x,Ry]g + [λx, λy]g

= (R+ λId)([Rx, y]g + [x, (R+ λId)y]g)

= (R+ λId)([(R+ λId)x, y]g + [x,Ry]g).

Hence, (R,R+λId) and (R+λId, R) are Rota-Baxter systems on (g, [·, ·]g). □

Let (g, [·, ·]g) be a Leibniz algebra. A linear map T : g → g is said to be a left
g-linear map (resp. a right g-linear map) if T [x, y]g = [x, Ty]g (resp. T [x, y]g =
[Tx, y]g) for any x, y ∈ g.

Lemma 3.3. Let (g, [·, ·]g) be a Leibniz algebra. Suppose that R : g → g is
a left g-linear map and S : g → g is a right g-linear map. Then (R,S) is a
Rota-Baxter system on (g, [·, ·]g) if and only if

[x,R ◦ S(y)]g = 0 = [S ◦R(x), y]g for x, y ∈ g.
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Proof. For any x, y ∈ g, we observe that

R([Rx, y]g + [x, Sy]g) = [Rx,Ry]g + [x,R ◦ S(y)]g
and

S([Rx, y]g + [x, Sy]g) = [R ◦ S(x), Ry]g + [Sx, Sy]g.

It follows from the above two identities that (R,S) is a Rota-Baxter system on
(g, [·, ·]g) if and only if

[x,R ◦ S(y)]g = 0 = [S ◦R(x), y]g for x, y ∈ g. □

A Leibniz algebra (g, [·, ·]g) is said to be nondegenerate if the bracket [·, ·]g
satisfies the following

[x, y]g = 0 for all y implies that x = 0,

[x, y]g = 0 for all x implies that y = 0.

Corollary 3.4. Let (g, [·, ·]g) be a nondegenerate Leibniz algebra. Let R : g → g
be a left g-linear map and S : g → g be a right g-linear map. Then (R,S) is a
Rota-Baxter system on (g, [·, ·]g) if and only if

R ◦ S = S ◦R = 0.

Another class of Rota-Baxter systems arises from twisted Rota-Baxter op-
erators. Let (g, [·, ·]g) be a Leibniz algebra and σ : g → g be a Leibniz algebra
morphism.

Definition 8. A linear map R : g → g is said to be a σ-twisted Rota-Baxter
operator if R satisfies

[Rx,Ry]g = R([Rx, y]g + [x, (σ ◦R)y]g) for all x, y ∈ g.(1)

When σ = Id, a σ-twisted Rota-Baxter operator is nothing but a Rota-
Baxter operator.

Example 3.5. A differential Rota-Baxter Leibniz algebra of weight λ is a
Leibniz algebra (g, [·, ·]g) together with linear maps R, ∂ : g → g satisfying the
following set of identities

(dR1) [Rx,Ry]g = R([Rx, y]g + [x,Ry]g + λ[x, y]g),
(dR2) ∂[x, y]g = [∂x, y]g + [x, ∂y]g + λ[∂x, ∂y]g,
(dR3) ∂ ◦R = Id.

Let (g,R, ∂) be a differential Rota-Baxter Leibniz algebra of weight λ. It follows
from (dR2) that the map

σ : g → g, σ(x) = x+ λ∂(x) for x ∈ g

is a Leibniz algebra morphism. On the other hand, (dR3) implies that

(σ ◦R)(x) = R(x) + λx for x ∈ g.
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Furthermore, by (dR2), we get

[Rx,Ry]g = R([Rx, y]g + [x, (σ ◦R)y]g) for x, y ∈ g.

Hence, R is a σ-twisted Rota-Baxter operator.

Proposition 3.6. Let R be a σ-twisted Rota-Baxter operator on a Leibniz
algebra (g, [·, ·]g). Then (R, σ ◦R) is a Rota-Baxter system on (g, [·, ·]g).

Proof. Note that condition Eq. (1) is the same as the first condition of a Rota-
Baxter system. To prove the second one, we observe that

[(σ ◦R)x, (σ ◦R)y]g = σ[Rx,Ry]g

= (σ ◦R)([Rx, y]g + [x, (σ ◦R)y]g).
This shows that (R, σ ◦R) is a Rota-Baxter system on (g, [·, ·]g). □

Example 3.7. Let (W, [·, ·]W ) be the Witt Lie algebra generated by basis
elements {ln}n∈Z and the Lie bracket given by

[lm, ln]W = (m− n)lm+n for m,n ∈ Z.
View this Lie algebra as a Leibniz algebra. Let q ∈ K be a nonzero scalar that
is not a root of unity. We define linear maps σ,R :W →W by

σ(ln) = qnln, R(ln) =
1− q

1− qn
ln for n ∈ Z.

Then σ is a Leibniz algebra morphism. Moreover, it is easy to verify that R
satisfies

[R(lm), R(ln)]W = R([R(lm), ln]W + [lm, (σ ◦R)(ln)]W ) for m,n ∈ Z.

Therefore, R is a σ-twisted Rota-Baxter operator. Hence, (R, σ ◦R) is a Rota-
Baxter system on W .

In [23] the authors introduced a notion of weak pseudotwistor on an associa-
tive algebra and showed that a weak pseudotwistor induces a new associative
algebra structure. A Rota-Baxter system on an associative algebra gives rise
to a weak pseudotwistor, hence a new associative algebra structure. This is not
true for Rota-Baxter systems on Leibniz algebras. However, if we concentrate
on Rota-Baxter operators, they induce a new Leibniz algebra structure via a
Leibniz analogue of weak pseudotwistor. Let us first recall the new Leibniz
algebra associated with a Rota-Baxter operator on a Leibniz algebra.

Let (g, [·, ·]g) be a Leibniz algebra, and R : g → g be a Rota-Baxter operator,
i.e., R satisfies

[Rx,Ry]g = R([Rx, y] + [x,Ry]) for x, y ∈ g.

Then the vector space g carries a new Leibniz algebra structure with bracket

[x, y]R = [Rx, y] + [x,Ry] for x, y ∈ g.

Here we give a new example of a Rota-Baxter operator on a Leibniz algebra
induced from a dialgebra [19].
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Definition 9. A dialgebra is a vector space D together with two bilinear
operations ⊣,⊢: D ⊗D → D satisfying the following identities

a ⊣ (b ⊣ c) = (a ⊣ b) ⊣ c = a ⊣ (b ⊢ c),
(a ⊢ b) ⊣ c = a ⊢ (b ⊣ c),
(a ⊣ b) ⊢ c = (a ⊢ b) ⊢ c = a ⊢ (b ⊢ c) for a, b, c ∈ D.

A dialgebra as above may be denoted by the triple (D,⊣,⊢). Any asso-
ciative algebra is a dialgebra with both the bilinear maps coinciding with the
associative product. See Loday [19] for more examples of dialgebras.

It is known that a dialgebra (D,⊣,⊢) induced a Leibniz algebra by

[a, b]D := a ⊢ b− b ⊣ a for a, b ∈ D.

The Leibniz algebra is called the Leibniz algebra induced from the dialgebra
(D,⊣,⊢).

Definition 10. Let (D,⊣,⊢) be a dialgebra. A Rota-Baxter operator on D
consists of a linear map R : D → D satisfying

R(a) ∗R(b) = R(R(a) ∗ b+ a ∗R(b))
for all a, b ∈ D and ∗ = ⊣,⊢.

The following proposition is easy to check.

Proposition 3.8. Let (D,⊣,⊢) be a dialgebra and R be a Rota-Baxter oper-
ator on it. Then R is a Rota-Baxter operator on the induced Leibniz algebra
(D, [·, ·]D).

The Leibniz bracket [·, ·]R induced from a Rota-Baxter operator R can be
understood in terms of the weak pseudotwistor on a Leibniz algebra.

Definition 11. Let (g, [·, ·]g) be a Leibniz algebra with the Leibniz bracket
denoted by the product µ. A linear map T : g ⊗ g → g ⊗ g is said to be a
weak pseudotwistor if there exist a linear map τ : g ⊗ g ⊗ g → g ⊗ g ⊗ g with
(η12 ⊗ Id) ◦ τ = τ ◦ (η12 ⊗ Id) and commuting the following diagram:

g ⊗ g ⊗ g
Id⊗µ // g ⊗ g

T

��

g ⊗ g ⊗ g
µ⊗Idoo

g ⊗ g ⊗ g

Id⊗T
88

τ
&&

g ⊗ g ⊗ g

τ
xx

T⊗Id
ff

g ⊗ g ⊗ g
Id⊗µ

// g ⊗ g g ⊗ g ⊗ g
µ⊗Id

oo

Here η12 : g⊗ g → g⊗ g is the flip map η12(x⊗ y) = y⊗x. The map τ is called
a weak companion of T .

Proposition 3.9. Let (g, [·, ·]g) be a Leibniz algebra and T : g ⊗ g → g ⊗ g be
a weak pseudotwistor. Then (g, µ ◦ T ) is a new Leibniz algebra structure on g.
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Proof. We have

(µ ◦ T ) ◦ (Id⊗ (µ ◦ T ))
= µ ◦ (Id⊗ µ) ◦ τ
= µ ◦ (µ⊗ Id) ◦ τ + µ ◦ (Id⊗ µ) ◦ (η12 ⊗ Id) ◦ τ
= (µ ◦ T ) ◦ ((µ ◦ T )⊗ Id) + µ ◦ (Id⊗ µ) ◦ τ ◦ (η12 ⊗ Id)

= (µ ◦ T ) ◦ ((µ ◦ T )⊗ Id) + (µ ◦ T ) ◦ (Id⊗ (µ ◦ T )) ◦ (η12 ⊗ Id).

This shows that µ ◦ T defines a Leibniz bracket on g. □

Proposition 3.10. Let (g, [·, ·]g) be a Leibniz algebra and R : g → g be a
Rota-Baxter operator on it. Then the map T : g ⊗ g → g ⊗ g defined by

T (x⊗ y) = R(x)⊗ y + x⊗R(y)

is a weak pseudotwistor on g. Consequently, g carries a new Leibniz algebra
structure with bracket [x, y]R = [Rx, y]g + [x,Ry]g for x, y ∈ g.

Proof. We define τ : g ⊗ g ⊗ g → g ⊗ g ⊗ g by

τ(x⊗ y ⊗ z) = R(x)⊗R(y)⊗ z +R(x)⊗ y ⊗R(z)

+ x⊗R(y)⊗R(z) for x, y, z ∈ g.

We will show that T is a weak pseudotwistor with a weak companion τ . First,
observe that

((η12 ⊗ Id) ◦ τ)(x⊗ y ⊗ z)

= R(y)⊗R(x)⊗ z + y ⊗R(x)⊗R(z) +R(y)⊗ x⊗R(z)

= τ(y ⊗ x⊗ z) = (τ ◦ (η12 ⊗ Id))(x⊗ y ⊗ z).

Next, we have

(T ◦ (Id⊗ µ ◦ T ))(x⊗ y ⊗ z)

= R(x)⊗ µ(R(y)⊗ z + y ⊗R(z)) + x⊗ µ(R(y)⊗R(z))

= ((Id⊗ µ) ◦ τ)(x⊗ y ⊗ z).

Similarly, we have

T ◦ ((µ ◦ T )⊗ Id) = (µ⊗ Id) ◦ τ.
Hence, the result follows. □

Remark 3.11. The notion of weak pseudotwistor on a Leibniz algebra is a gener-
alization of weak pseudotwistor on an associative algebra introduced by Panaite
and Oystaeyen [23]. In the associative context, a Rota-Baxter system induces a
weak pseudotwistor on the underlying associative algebra. It is remarked that
given a Leibniz algebra (g, [·, ·]g) and a Rota-Baxter system (R,S) on g, the
map

T : g ⊗ g → g ⊗ g, T (x⊗ y) = R(x)⊗ y + x⊗ S(y)



RELATIVE ROTA-BAXTER SYSTEMS ON LEIBNIZ ALGEBRAS 317

is not a weak pseudotwistor on g with weak companion

τ(x⊗ y ⊗ z) = R(x)⊗R(y)⊗ z +R(x)⊗ y ⊗ S(z) + x⊗ S(y)⊗ S(z)

as (η12 ⊗ Id) ◦ τ ̸= τ ◦ (η12 ⊗ Id).

4. Maurer-Cartan characterization of relative Rota-Baxter systems

In the section, we construct a graded Lie algebra that characterizes relative
Rota-Baxter systems as Maurer-Cartan elements. Using this characterization,
we define the cohomology associated with a relative Rota-Baxter system. We
first recall some results from [2].

A permutation σ ∈ Sn is called an (i, n − i)-shuffle if σ(1) < · · · < σ(i)
and σ(i + 1) < · · · < σ(n). If i = 0 or n we assume σ = Id. The set of all
(i, n− i)-shuffles will be denoted by S(i,n−i).

Let M be a vector space. We consider the graded vector space

C∗(M,M) = ⊕n≥1C
n(M,M) = ⊕n≥1Hom(⊗nM,M)

of multilinear maps on M . The Balavoine bracket is a degree −1 bracket on
the graded vector space C∗(M,M) given by

[f, g]B := f◦g − (−1)pqg◦f

for f ∈ Cp+1(M,M), g ∈ Cq+1(M,M). Here f◦g ∈ Cp+q+1(M,M) is defined
by

f◦g =

p+1∑
k=1

(−1)(k−1)qf ◦k g

with

(f ◦k g)(x1, . . . , xp+q+1)

=
∑

σ∈S(k−1,q)

(−1)σf(xσ(1), . . . , xσ(k−1), g(xσ(k), . . . , xσ(k+q−1), xk+q), xk+q+1, . . . , xp+q+1).

Theorem 4.1 ([2]). With the above notations, (C∗(M,M), [·, ·]B) is a degree
−1 graded Lie algebra. In other words (C∗+1(M,M), [·, ·]B) is a graded Lie
algebra. Its Maurer-Cartan elements are precisely the Leibniz algebra structures
on M .

Let (V, ρL, ρR) be a representation of a Leibniz algebra (g, [·, ·]g). Consider
the semidirect product Leibniz algebra structure on g ⊕ g ⊕ V . We denote the
corresponding Leibniz product by µ̂. Then µ̂ is a Maurer-Cartan element in
the graded Lie algebra (C∗+1(g ⊕ g ⊕ V, g ⊕ g ⊕ V ), [·, ·]B).

Consider the graded vector subspace C∗(V, g) ⊂ C∗(g ⊕ g ⊕ V, g ⊕ g ⊕ V )
given by

C∗(V, g) := ⊕n≥1C
n(V, g) := ⊕n≥1Hom(V ⊗n, g ⊕ g).
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Theorem 4.2. With the above notations, (C∗(V, g), [[·, ·]]) is a graded Lie al-
gebra, where the graded Lie bracket [[·, ·]] : Cm(V, g)× Cn(V, g) → Cm+n(V, g)
is defined by

[[(P,Q), (P ′, Q′)]] := (−1)m[[µ̂, (P,Q)]B , (P
′, Q′)]B

for any (P,Q) ∈ Cm(V, g), (P ′, Q′) ∈ Cn(V, g). Moreover, its Maurer-Cartan
elements are relative Rota-Baxter systems on the Leibniz algebra (g, [·, ·]g) with
respect to the representation (V, ρL, ρR).

Let Pr1, P r2 : g ⊕ g → g denote the projection maps onto the first and
second factor, respectively. Then the explicit description of the above graded
Lie bracket is given by

Pr1([[(P,Q), (P ′, Q′)]](v1, . . . , vm+n))

=
m∑

k=1

∑
σ∈S(k−1,n)

(−1)(k−1)n(−1)σP (vσ(1), . . . , vσ(k−1), ρ
L(P ′(vσ(k), . . . , vσ(k+n−1)))vk+n, . . . , vm+n)

+
m∑

k=2

∑
σ∈S(k−2,n,1)

(−1)kn(−1)σP (vσ(1), . . . , vσ(k−2), ρ
R(Q′(vσ(k), . . . , vσ(k+n−2)))vσ(k+n−1),

vk+n, . . . , vm+n)

+

n∑
k=1

∑
σ∈S(k−1,m)

(−1)(k+n−1)m(−1)σP ′(vσ(1), . . . , vσ(k−1), ρ
L(P (vσ(k), . . . , vσ(k+m−1)))vσ(k+m)

,

. . . , vm+n)

n∑
k=1

∑
σ∈S(k−1,m,1),

σ(k+m−1)=k+m

(−1)(k+n−1)m+1(−1)σP ′(vσ(1), . . . , vσ(k−1), ρ
R(Q(vσ(k), . . . , vσ(k−1+m)))vσ(k+m),

vk+m+1, . . . , vm+n)

+
∑

σ∈S(m,n−1)

(−1)mn+1(−1)σ[P (vσ(1), . . . , vσ(m)), P
′(vσ(m+1), . . . , vσ(m+n−1), vm+n]g

+
m∑

k=1

∑
σ∈S(k−1,n−1)

(−1)(k−1)n(−1)σ[P ′(vσ(k), . . . , vσ(k+n−2)), P (vσ(1), . . . , vσ(k−1), vk+n, . . . , vm+n)]g

and

Pr2([[(P,Q), (P ′, Q′)]](v1, . . . , vm+n))

=
m∑

k=1

∑
σ∈S(k−1,n)

(−1)(k−1)n(−1)σQ(vσ(1), . . . , vσ(k−1), ρ
L(P ′(vσ(k), . . . , vσ(k+n−1)))vk+n, . . . , vm+n)

+

m∑
k=2

∑
σ∈S(k−2,n,1)

(−1)kn(−1)σQ(vσ(1), . . . , vσ(k−2), ρ
R(Q′(vσ(k), . . . , vσ(k+n−2)))vσ(k+n−1), vk+n,

. . . , vm+n)

+
n∑

k=1

∑
σ∈S(k−1,m)

(−1)(k+n−1)m(−1)σQ′(vσ(1), . . . , vσ(k−1), ρ
L(P (vσ(k), . . . , vσ(k+m−1)))vσ(k+m)

,

. . . , vm+n)
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n∑
k=1

∑
σ∈S(k−1,m,1),

σ(k+m−1)=k+m

(−1)(k+n−1)m+1(−1)σQ′(vσ(1), . . . , vσ(k−1), ρ
R(Q(vσ(k), . . . , vσ(k−1+m)))vσ(k+m),

vk+m+1, . . . , vm+n)

+
∑

σ∈S(m,n−1)

(−1)mn+1(−1)σ[Q(vσ(1), . . . , vσ(m)), Q
′(vσ(m+1), . . . , vσ(m+n−1), vm+n]g

+

m∑
k=1

∑
σ∈S(k−1,n−1)

(−1)(k−1)n(−1)σ[Q′(vσ(k), . . . , vσ(k+n−2)), Q(vσ(1), . . . , vσ(k−1), vk+n, . . . , vm+n)]g

for any (P,Q) ∈ Cm(V, g), (P ′, Q′) ∈ Cn(V, g).

Proof. The graded Lie algebra (C∗(V, g), [[·, ·]]) is obtained via the derived
bracket [28]. First, consider the graded Lie algebra (C∗+1(g ⊕ g ⊕ V, g ⊕
g ⊕ V ), [·, ·]B). Since µ̂ is the semidirect product Leibniz algebra structure
on the vector space g ⊕ g ⊕ V , we deduce that (C∗+1(g ⊕ g ⊕ V, g ⊕ g ⊕ V ),
[·, ·]B , d = [µ̂, ·]B) is a differential graded Lie algebra. Obviously C∗+1(V, g)
is an abelian subalgebra. Therefore, by the derived bracket construction, we
define a bracket on the shifted graded vector space C∗(V, g) by

[[(P,Q), (P ′, Q′]] := (−1)m[d((P,Q)), (P ′, Q′)]B = (−1)m[[µ̂, (P,Q)], (P ′, Q′)]

for any (P,Q) ∈ Cm(V, g), (P ′, Q′) ∈ Cn(V, g). The derived bracket [[·, ·]] is
closed on C∗(V, g), which implies that (C∗(V, g), [[·, ·]]) is a graded Lie algebra.

For (R,S) ∈ C1(V, g), we have

Pr1([[(R,S), (R,S)]](u, v)) = 2([Ru,Rv]g −R(ρL(Ru)v)−R(ρR(Sv)u)),

P r2([[(R,S), (R,S)]](u, v)) = 2([Su, Sv]g − S(ρL(Ru)v)− S(ρR(Sv)u)).

Thus, (R,S) is a Maurer-Cartan element (i.e., [[(R,S), (R,S)]] = 0) if and only
if (R,S) is a relative Rota-Baxter systems on g with respect to the representa-
tion (V, ρL, ρR). The proof is finished. □

Thus, relative Rota-Baxter systems can be characterized as Maurer-Cartan
elements in a graded Lie algebra. It follows from the above theorem that if
(R,S) is a relative Rota-Baxter system, then d(R,S) := [[(R,S), ·]] is a differen-
tial on C∗(V, g) and makes the gLa (C•(V, g), [[·, ·]]) into a differential graded
Lie algebra.

The cohomology of the cochain complex (C•(V, g), d(R,S)) is called the coho-
mology of the relative Rota-Baxter system (R,S). We denote the corresponding
cohomology groups simply by H•(V, g).

The following theorem describes the Maurer-Cartan deformation of a relative
Rota-Baxter system.

Theorem 4.3. Let (R,S) be a relative Rota-Baxter system on a Leibniz algebra
(g, [·, ·]g) with respect to a representation (V, ρL, ρR). For any pair (R′, S′)
of linear maps from V to g, the pair of sums (R + R′, S + S′) is a relative
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Rota-Baxter system if and only if (R′, S′) is a Maurer-Cartan element in the
differential graded Lie algebra (C∗(V, g), [[·, ·]], d(R,S)), i.e.,

[[(R+R′, S + S′), (R+R′, S + S′)]] = 0

⇔ d(R,S)(R
′, S′) +

1

2
[[(R′, S′), (R′, S′)]] = 0.

5. Deformations of relative Rota-Baxter systems

5.1. Formal deformations

Let K[[t]] be the ring of power series in one variable t. For any K-linear space
V , let V [[t]] denote the vector space of formal power series in t with coefficients
from V . If in addition, (g, [·, ·]g) is a Leibniz algebra over K, then there is a
K[[t]]-Leibniz algebra structure on g[[t]] given by

[

+∞∑
i=0

xit
i,

+∞∑
j=0

yjt
j ]g =

+∞∑
k=0

∑
i+j=k

[xi, yj ]t
k for all xi, yj ∈ g.

Let (V, ρL, ρR) be a representation of the Leibniz algebra (g, [·, ·]g). Then there
is a representation (V [[t]], ρL, ρR) of the K[[t]]-Leibniz algebra g[[t]]. Here ρL

and ρR are given by

ρL(

+∞∑
i=0

xit
i)(

+∞∑
j=0

vjt
j) =

+∞∑
k=0

∑
i+j=k

ρL(xi)(vj)t
k,

ρR(

+∞∑
i=0

xit
i)(

+∞∑
j=0

vjt
j) =

+∞∑
k=0

∑
i+j=k

ρR(xi)(vj)t
k for all xi ∈ g, vj ∈ V.

Let (R,S) be a relative Rota-Baxter system on the Leibniz algebra (g, [·, ·]g)
with respect to the representation (V, ρL, ρR). We consider two power series

Rt =

+∞∑
i=0

Rit
i and St =

+∞∑
j=0

Sjt
j , where Ri,Sj ∈ HomK(V, g).

That is, both Rt and St are in HomK(V, g)[[t]]. Extend them to K[[t]]-linear
maps from V [[t]] to g[[t]]. We still denote them by the same symbols.

Definition 12. If Rt =
∑+∞

i=0 Rit
i and St =

∑+∞
j=0 Sjt

j with R0 = R, S0 = S
satisfy

[Rtu,Rtv]g = Rt(ρ
L(Rtu)v + ρR(Stv)u),

[Stu, Stv]g = St(ρ
L(Rtu)v + ρR(Stv)u)),

we say that (Rt, St) is a formal deformation of the relative Rota-Baxter system
(R,S).
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By expanding these equations and comparing coefficients of various powers
of t, we obtain for k ≥ 0,

+∞∑
k=0

∑
i+j=k

[Riu,Rjv]g =

+∞∑
k=0

∑
i+j=k

Ri(ρ
L(Rju)v + ρR(Sjv)u),

+∞∑
k=0

∑
i+j=k

[Siu,Sjv]g =

+∞∑
k=0

∑
i+j=k

Si(ρ
L(Rju)v + ρR(Sjv)u)).

Both of these identities hold for k = 0 as (R,S) is a relative Rota-Baxter
system. For k = 1, we get

[Ru,R1v]g+[R1u,Rv]g = R1(ρ
L(Ru)v+ρR(Sv)u)+R(ρL(R1u)v+ρ

R(S1v)u),

[Su,S1v]g+[S1u, Sv]g = S1(ρ
L(Ru)v+ρR(Sv)u)+S(ρL(R1u)v+ρ

R(S1v)u

for u, v ∈ V . These identities are equivalent to the single condition

[[(R,S), (R1,S1)]] = 0.

As a consequence, we get the following.

Proposition 5.1. Let (Rt =
∑+∞

i=0 Rit
i, St =

∑+∞
j=0 Sjt

j) be a formal defor-

mation of a relative Rota-Baxter system (R,S) on the Leibniz algebra (g, [·, ·]g)
with respect to a representation (V, ρL, ρR). Then (R1,S1) is a 1-cocycle in the
cohomology of the relative Rota-Baxter system (R,S), that is, d(R,S)(R1,S1) =
0.

Definition 13. Let (R,S) be a relative Rota-Baxter system on the Leib-
niz algebra (g, [·, ·]g) with respect to a representation (V, ρL, ρR). The 1-
cocycle (R1,S1) is called the infinitesimal of the formal deformation (Rt =∑+∞

i=0 Rit
i, St =

∑+∞
j=0 Sjt

j) of the relative Rota-Baxter system (R,S).

Definition 14. Two formal deformations (Rt, St) and (R′
t, S

′
t) of a relative

Rota-Baxter system (R,S) on the Leibniz algebra (g, [·, ·]g) with respect to a
representation (V, ρL, ρR) are said to be equivalent if there exist two elements
x, y ∈ g and linear maps ϕi, φi ∈ gl(g) and ψi ∈ gl(V ) for i ≥ 2 such that for

ϕt = Idg + t(Lx −Rx) +

+∞∑
i=2

ϕit
i, φt = Idg + t(Ly −Ry) +

+∞∑
i=2

φit
i

and ψt = IdV + t(ρL(x)− ρR(y)) +

+∞∑
i=2

ψit
i,

the following conditions hold:

(i) [ϕt(z), ϕt(w)]g = ϕt([z, w]g), [φt(z), φt(w)]g = φt([z, w]g);
(ii) ψt(ρ

L(z)u) = ρL(ϕt(z))ψt(u);
(iii) ψt(ρ

R(z)u) = ρR(φt(z))ψt(u);
(iv) R′

t ◦ ψt(u) = ϕt ◦Rt(u), S
′
t ◦ ψt(u) = φt ◦ St(u)
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for all z, w ∈ g and u ∈ V .

By expanding the identities in (iv) and equating coefficients of t from both
sides, we obtain

(R1,S1)(u)− (R′
1,S

′
1)(u)

= [R(u), x]g −R(ρR(y)u)− [x,R(u)]g +R(ρL(x)u)

+ [S(u), y]g − S(ρR(y)u)− [y, S(u)]g + S(ρL(x)u)

= (d(R,S)(x, y))(u).

Thus, we have the following.

Theorem 5.2. The cohomology class of the infinitesimal of a formal deforma-
tion depends only on the equivalence class of the deformation.

5.2. Finite order deformations of a relative Rota-Baxter system

In this subsection, we introduce a cohomology class associated to any order
n deformation of a relative Rota-Baxter system, and show that an order n
deformation is extensible if and only if this cohomology class is trivial. Thus,
we call this cohomology class the obstruction class of the order n deformation
being extensible.

Definition 15. Let (R,S) be a relative Rota-Baxter system on a Leibniz
algebra (g, [·, ·]g) with respect to a representation (V, ρL, ρR). If the finite sums

Rt =

n∑
i=0

Rit
i and St =

n∑
j=0

Sjt
j with R0 = R, S0 = S

as K[[t]]/(tn+1)-module maps from V [[t]]/(tn+1) to the Leibniz algebra
g[[t]]/(tn+1) satisfy

[Rtu,Rtv]g = Rt(ρ
L(Rtu)v + ρR(Stv)u),

[Stu, Stv]g = St(ρ
L(Rtu)v + ρR(Stv)u)) for u, v ∈ V,

we say that (Rt, St) is an order n deformation of the relative Rota-Baxter
system (R,S).

Definition 16. Let (Rt, St) be an order n deformation of the relative Rota-
Baxter system (R,S) on a Leibniz algebra (g, [·, ·]g) with respect to a represen-
tation (V, ρL, ρR). If there exists a pair (Rn+1,Sn+1) of linear maps from V
to g such that

(R̂t = Rt + tn+1Rn+1, Ŝt = St + tn+1Sn+1)

is a deformation of order n+ 1, we say that (Rt, St) is extensible.

Let (Rt, St) be an order n deformation of the relative Rota-Baxter sys-
tem (R,S) on a Leibniz algebra (g, [·, ·]g) with respect to a representation
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(V, ρL, ρR). Define an element Ob(Rt,St) ∈ C2(V, g) by

Ob(Rt,St) = −1

2

∑
i+j=n+1,i,j≥1

[[(Ri,Si), (Rj ,Sj)]].(2)

Proposition 5.3. The 2-cochain Ob(Rt,St) is a 2-cocycle, that is,

d(R,S)(Ob(Rt,St)) = 0.

Proof. We have

d(R,S)(Ob(Rt,St))

= − 1

2

∑
i+j=n+1,i,j≥1

[[(R,S), [[(Ri,Si), (Rj ,Sj)]]]]

= − 1

2

∑
i+j=n+1,i,j≥1

([[[[(R,S), (Ri,Si)]], (Rj ,Sj)]]

− [[(Ri,Si), [[(R,S), (Rj ,Sj)]]]])

=
1

4

∑
i1+i2+j=n,i1,i2,j≥1

[[[[(Ri1 ,Si1), (Ri2 ,Si2)]], (Rj ,Sj)]]

− 1

4

∑
i+j1+j2=n,i,j1,j2≥1

[[(Ri,Si), [[(Rj1 ,Sj1), (Rj2 ,Sj2)]]]]

=
1

2

∑
i+j+k=n+1,i,j,k≥1

[[[[(Ri,Si), (Rj ,Sj)]], (Rk,Sk)]]

= 0.

The proof is finished. □

Definition 17. Let (Rt, St) be an order n deformation of the relative Rota-
Baxter system (R,S) on a Leibniz algebra (g, [·, ·]g) with respect to a repre-
sentation (V, ρL, ρR). The cohomology class [Ob(Rt,St)] ∈ H2(V, g) is called the
obstruction class for (Rt, St) being extensible.

As a consequence of Eq. (2) and Proposition 5.3, we obtain the following.

Theorem 5.4. Let (Rt, St) be an order n deformation of the relative Rota-
Baxter system (R,S) on a Leibniz algebra (g, [·, ·]g) with respect to a repre-
sentation (V, ρL, ρR). Then (Rt, St) is extensible if and only if the obstruction
class [Ob(Rt,St)] is trivial.

Corollary 5.5. If H2(V, g) = 0, then every 1-cocycle in the cohomology of a
relative Rota-Baxter system (R,S) is the infinitesimal of some formal defor-
mation of (R,S).
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