DOI QR코드

DOI QR Code

Anaerobic Mono- and Co-digestion of Primary Sludge, Secondary Sludge and Food Waste: Biogas Production at Different Mixture Ratio

일차슬러지, 이차슬러지 및 음식물류폐기물의 단독 및 통합 혐기성 소화: 혼합비율 차이에 따른 바이오가스 생산량 조사

  • Seonmin Kang (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University) ;
  • Minjae Kim (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University) ;
  • Juyun Lee (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University) ;
  • Sungyun Jung (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University) ;
  • Taeyoon Lee (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University) ;
  • Kwang Hee Nam (Industry-university Cooperation Foundation, Pukyong National University) ;
  • Joonyeob Lee (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University)
  • 강선민 (부경대학교 지구환경시스템과학부(환경공학전공)) ;
  • 김민재 (부경대학교 지구환경시스템과학부(환경공학전공)) ;
  • 이주윤 (부경대학교 지구환경시스템과학부(환경공학전공)) ;
  • 정성윤 (부경대학교 지구환경시스템과학부(환경공학전공)) ;
  • 이태윤 (부경대학교 지구환경시스템과학부(환경공학전공)) ;
  • 남광희 (부경대학교 산학협력단) ;
  • 이준엽 (부경대학교 지구환경시스템과학부(환경공학전공))
  • Received : 2022.11.24
  • Accepted : 2022.12.30
  • Published : 2023.01.31

Abstract

This study evaluated the biochemical methane potential (BMP) of primary sludge, secondary sludge, and food waste in batch anaerobic mono-digestion tests, and investigated the effects of mixture ratio of those organic wastes on methane yield and production rate in batch anaerobic co-digestion tests, that were designed based on a simplex mixture design method. The BMP of primary sludge, secondary sludge and food waste were determined as 234.2, 172.7, and 379.1 mL CH4/g COD, respectively. The relationships between the mixing ratio of those organic wastes with methane yield and methane production rate were successfully expressed in special cubic models. Both methane yield and methane production rate were estimated as higher when the mixture ratio of food waste was higher. At a mixing ratio of 0.5 and 0.5 for primary sludge and food waste, the methane yield of 297.9 mL CH4/g COD was expected; this was 19.4% higher than that obtained at a mixing ratio of 0.3333, 0.3333 and 0.3333 for primary sludge, secondary sludge, and food waste (249.5 mL CH4/g COD). These findings could be useful when designing field-scale anaerobic digersters for mono- and co-digestion of sewage sludges and food waste.

Keywords

Acknowledgement

이 논문은 2022년 부경대학교 국립대학육성사업 지원비에 의하여 연구되었습니다. 또한 이 성과는 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No. 2021R1C1C1009122). 또한 본 연구는 환경부의 폐자원에너지화 전문인력양성사업으로 지원되었습니다(YL-WE-21-002).

References

  1. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., Kalyuzhnyi, S., Jenicek, P., van Lier, J. B., 2009, Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays, Water Sci. and Technol., 59, 927-934. https://doi.org/10.2166/wst.2009.040
  2. APHA-AWWA-WEF, 2005, Standard methods for the examination of water and wastewater. 21st ed., American Public Health Association, Washington, DC.
  3. Appels, L., Baeyens, J., Degreve, J., Dewil, R., 2008, Principles and potential of the anaerobic digestion of waste-activated sludge, Prog. Energy Combust. Sci., 34, 755-781. https://doi.org/10.1016/j.pecs.2008.06.002
  4. Cabbai, V., Ballico, M., Aneggi, E., Goi, D., 2013, BMP tests of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge, Waste. Manag., 33, 1626-32. https://doi.org/10.1016/j.wasman.2013.03.020
  5. Filer, J., Ding, H. H., Chang, S., 2019, Biochemical Methane Potential (BMP) Assay Method for Anaerobic Digestion Research, Water, 11, 921.
  6. Gu, J., Liu, R., Cheng, Y., Stanisavljevic, N., Li, L., Djatkov, D., Peng, X., Wang, X., 2020, Anaerobic co-digestion of food waste and sewage sludge under mesophilic and thermophilic conditions: Focusing on synergistic effects on methane production, Bioresour. Technol., 301, 122765.
  7. Iacovidou, E., Ohandja, D. G., Voulvoulis, N., 2012, Food waste co-digestion with sewage sludge - Realising its potential in the UK. J. Environ. Manage., 112, 267-274. https://doi.org/10.1016/j.jenvman.2012.07.029
  8. Kim, S., Woo, S. G., Lee, J., Lee, D. H., Hwang, S., 2019, Evaluation of Feasibility of Using the Bacteriophage T4 Lysozyme to Improve the Hydrolysis and Biochemical Methane Potential of Secondary Sludge, Energies, 12, 3644.
  9. Le, T. N. T., Lee, J., 2022, Improving Anaerobic Digestion of Polyhydroxybutyrate by Thermal-Alkaline Pretreatment, J. Environ. Sci. Int., 31, 609-616. https://doi.org/10.5322/JESI.2022.31.7.609
  10. Le, T. N. T., Lee, J., 2021, Effect of Ammonia Load on Microbial Communities in Mesophilic Anaerobic Digestion of Propionic Acid, J. Environ. Sci. Int., 30, 1093-1100. https://doi.org/10.5322/JESI.2021.30.12.1093
  11. Lee, J., Han, G., Shin, S. G., Koo, T., Cho, K., Kim, W., Hwang, S., 2016, Seasonal monitoring of bacteria and archaea in a full-scale thermophilic anaerobic digester treating food waste-recycling wastewater: Correlations between microbial community characteristics and process variables, Chem. Eng. J, 300, 291-299. https://doi.org/10.1016/j.cej.2016.04.097
  12. Lee, J., Shin, S. G., Han, G., Koo, T., Hwang, S., 2017, Bacteria and archaea communities in full-scale thermophilic and mesophilic anaerobic digesters treating food wastewater: Key process parameters and microbial indicators of process instability, Bioresour. Technol., 245, 689-697. https://doi.org/10.1016/j.biortech.2017.09.015
  13. Ma, Y., Gu, J., Liu, Y., 2018, Evaluation of anaerobic digestion of food waste and waste activated sludge: Soluble COD versus its chemical composition. Sci. Total Environ., 643, 21-27. https://doi.org/10.1016/j.scitotenv.2018.06.187
  14. MoE, 2022, 2021 Present status of organic waste biogasification facilities, Ministry of Environment. Korea.
  15. Rintala, J., 1996, Full-Scale Mesophilic Anaerobic Co-Digestion of Municipal Solid Waste and Sewage Sludge: Methane Production Characteristics, Waste Manag. Res., 14, 163-170. https://doi.org/10.1177/0734242X9601400206
  16. Shin, S. G., Han, G., Lee, J., Cho, K., Jeon, E. J., Lee, C., Hwang, S. 2015, Characterization of food waste-recycling wastewater as biogas feedstock, Bioresour. Technol., 196, 200-8. https://doi.org/10.1016/j.biortech.2015.07.089
  17. Sun, H., Wang, E., Li, X., Cui, X., Guo, J., Dong, R., 2021, Potential biomethane production from crop residues in China: Contributions to carbon neutrality. Renew, Sust. Energ. Rev., 148, 111360.
  18. Tongco, J. V., Kim, S., Oh, B. R., Heo, S. Y., Lee, J., Hwang, S., 2020, Enhancement of Hydrolysis and Biogas Production of Primary Sludge by Use of Mixtures of Protease and Lipase, Biotechnol. Bioprocess Eng., 25, 132-140. https://doi.org/10.1007/s12257-019-0302-4
  19. Xu, F., Li, Y., Ge, X., Yang, L., Li, Y., 2018, Anaerobic digestion of food waste - Challenges and opportunities, Bioresour. Technol., 247, 1047-1058. https://doi.org/10.1016/j.biortech.2017.09.020
  20. Zwietering, M. H., Jongenburger, I., Rombouts, F. M., van 't Riet, K., 1990, Modeling of the bacterial growth curve, Appl. Environ. Microbiol., 56, 1875-81. https://doi.org/10.1128/aem.56.6.1875-1881.1990