DOI QR코드

DOI QR Code

Comparison of Sound Absorption Performance between Fresh and Air-dried Leaves by Leaf Composition in Quercus glauca

  • Su Young Jung (Warm-Temperate and Subtropical Forest Research Center, National Institute of Forest Science) ;
  • Hee-Seop Byeon (College of Agriculture & Life Science, Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Kwang-Soo Lee (Warm-Temperate and Subtropical Forest Research Center, National Institute of Forest Science) ;
  • Hyun-Soo Kim (Warm-Temperate and Subtropical Forest Research Center, National Institute of Forest Science)
  • Received : 2022.10.29
  • Accepted : 2022.12.29
  • Published : 2023.01.31

Abstract

The purpose of this study was to determine the optimal sound absorption conditions by comparing the sound absorption characteristics of fresh and air-dried leaves of Quercus glauca, the main species of evergreen broadleaf trees (EBLT) in southern Korea. The sound absorption coefficients (SACs) obtained under 18 conditions were comparatively analyzed. The SAC of air-dried leaves improved significantly with increasing leaf layer thickness. The highest average SAC in the fresh leaf group was 0.617, which was observed under the condition of a leaf specimen size of 0.5 × 0.5 cm2 and a leaf layer thickness of 1.75 cm. In a group of air-dried leaves, this was 0.615 under the condition of a leaf specimen size of 0.5 × 0.5 cm2 and a leaf layer thickness of 2.50 cm. The maximum value of SAC for each wavelength was observed under the condition of a leaf layer thickness of 2.50 cm consisting of 0.5 × 0.5 cm2 leaf specimens, ranging from 1,400 Hz to 1,500 Hz.

Keywords

Acknowledgement

This research was supported by a grant the Research and Development Support Project SC0600-2021-01 of the National Institute of Forest Sciences, Korea Forest Service.

References

  1. ASTM International, 2016, ASTM C 384-04, 2016, Standard test method for impedance and absorption of acoustical materials by impedance tube method, American Society for Testing and Materials, Philadelphia, PA, USA, 9.
  2. Bujoreanu, C., Nedeff, F., Benchea, M., Agop, M., 2017, Experimental and theoretical considerations on sound absorption performance of waste materials including the effect of backing plates, Appl.. Acoustics, 119, 88-93. https://doi.org/10.1016/j.apacoust.2016.12.010
  3. Byeon, H. S., Park, J. H., Hwang, K. K., Park, H. M., Park, B. S., Chong, S.H., 2010, Sound absorption property of heat-treated wood at a low temperature and vacuum conditions. J. Korean Wood Sci. Tech., 38, 101-107. https://doi.org/10.5658/WOOD.2010.38.2.101
  4. Choi, C. H., Cho, H. Y., Lee, J. M., 2001, Study on the sound absorbing characteristics of recycled materials - Based on used paper and cigarette filters, J. Environ. Sci. Int., 1, 9-12.
  5. Ersoy, S., Kucuk, H. 2009, Investigation of industrial tea-leaf-fiber waste material for its sound absorption properties, Applied Acoustics, 70, 215-220. https://doi.org/10.1016/j.apacoust.2007.12.005
  6. Hwang, K. H., Kim, G. H., Park, B. S., Park, J. H., Byeon, H. S., Lee, W. H., 2008, Sound absorption characteristic of resonator by hole position and wood species, J. Korean Wood Sci. Technol., 36, 9-16.
  7. Hakamada, M., Kuromura, T., Chen, Y., Kusuda, H., Mabuchi, M., 2006, Sound absorption characteristics of porous aluminum fabricated by spacer method, J. Appl. Phys., 100, 114908, https://doi.org/10.1063/1.2390543.
  8. Han, H., Kim, Y. H., Bae, J. S., Shin, J. H., 2020, Analyzing the effects of species conversion projects on CO2 absorption enhancement in poorly stocked forest stands, J. Climate Change Res., 11, 197-202. https://doi.org/10.15531/KSCCR.2020.11.3.197
  9. Hoda, S. S., 2009, Factors influencing acoustic performance of sound absorptive materials, Aust. J. Basic Appl. Sci., 3, 4610-4617.
  10. IPCC., 2014, Climate change 2014: Synthesis report. In contribution of working group I, II, and III to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press: Cambridge, UK; New York, NY, USA, 1-151.
  11. Ismail, L., Ghazali, M. I., Mahzan, S., Zaidi, A. A., 2010, Sound absorption of Arenga Pinnata natural fiber, Int. J. of Mat. and Meta. Eng., 4, 438-440.
  12. Iswanto, A. H., Hakim, A. R., Azhar, I., Wirjosentono, B., Prabuningrum, D. S., 2020, The physical, mechanical, and sound absorption properties of sandwich particleboard (SPb), J. Korean Wood Sci. Technol. 2, 48, 32-49. https://doi.org/10.5658/WOOD.2020.48.1.32
  13. Jang, E. S., Kang, C. W., Kang, H. Y., Jang, S. S., 2018, Sound absorption property of traditional Korean natural wallpaper (Hanji), J. Korean Wood Sci. Technol., 46, 703-712. https://doi.org/10.5658/WOOD.2018.46.6.703
  14. Jung, S. Y., Yeom, D. H., Kong, R. K., Shin, G. G., Lee, K. S., Byeon, H. S., 2020, Sound absorption property of the leaves of two evergreen broad-leaved tree species, Dendropanax morbiferus and Fatsia japonica, J. Korean Wood Sci. Technol., 48, 631-640. https://doi.org/10.5658/WOOD.2020.48.5.631
  15. Jung. S. Y., Kong. R. K., Lee. K. S., 2021, Effects of air-dried leaves of evergreen broad-leaved trees on sound absorption property, J. Korean Wood Sci. Technol., 49, 482-490. https://doi.org/10.5658/WOOD.2021.49.5.482
  16. Kang, C. W., Jang, E. S., Jang, S. S., Cho, J. I., Kim, N. H., 2019c, Effect of heat treatment on the gas permeability, sound absorption coefficient, and sound transmission loss of Paulownia tomentosa wood, J. Korean Wood Sci. Technol., 47, 644-654. https://doi.org/10.5658/wood.2019.47.5.644
  17. Kang, C. W., Jang, E. S., Jang, S. S., Kang, H. Y., Kang, S. G., Oh, S. C., 2019b, Sound absorption rate and sound transmission loss of wood bark particle, J. Korean Wood Sci. Technol., 47, 425-441. https://doi.org/10.5658/WOOD.2019.47.4.425
  18. Kang, C. W., Kang, H. Y., 2015, Effect of flame resistant treatment on the sound absorption capability of sawdust-mandarin peel composite particleboard, J. Korean Wood Sci. Technol., 43, 511-517. https://doi.org/10.5658/WOOD.2015.43.4.511
  19. Kang, C. W., Kang, U., Jung, I. S., Park, H. J., Jeon, S. S., 2008, Sound absorption capability and anatomical features of oak mushroom bed log, J. Korean Wood Sci. Technol., 36, 54-60. https://doi.org/10.5658/WOOD.2008.36.1.054
  20. Kang, C. W., Lee, N. H., 2005, Changes of sound absorption capability and anatomical features of wood by delignification treatment, J. Korean Wood Sci. Technol., 33, 9-14.
  21. Kang, C. W., Lee, N. H., Jang, S. S., Kang, H. Y., 2019a, Sound absorption coefficient and sound transmission loss of rice hull mat, J. Korean Wood Sci. Technol., 47, 290-298. https://doi.org/10.5658/WOOD.2019.47.3.290
  22. Kang, C. W., Park, H. J., 2001, Improvement of sound absorption capability of wood and wood-based board by resonant absorption, J. Korean Wood Sci. Technol., 29, 16-21.
  23. Koizumi, T., Tsujiuchi, N., Adachi, A., 2002, The development of sound absorbing materials using natural bamboo fibers, WIT Transactions on The Built Environment, 59, 157-166.
  24. Korea Forest Service (KFS), 2002, Restoration and development for bio-technology in warm temperate forest ; Industry, academy and government cooperative study IV, Korea. Korea Forest Service, Korea, 58.
  25. Korea Forest Service (KFS), 2018, Annual action plan of forest resources, Korea Forest Service, Korea, 338.
  26. Korea Forest Service (KFS), 2021, Forest sector promotion strategy to achieve 2050 carbon neutrality. Korea Forest Service, Korea, 35.
  27. McGrory, M., Cirac, D. C., Gaussen, O., Cabrera, D., 2012, Sound absorption coefficient measurement: Re-examining the relationship between impedance tube and reverberant room methods, Proceeding of Acoustics 2012, Fremantle, Australia, Australian Acoustical Society, 1-8.
  28. Nor, M. J. M., Jamaludin, N., Tamiri, F. M., 2004, A Preliminary study of sound absorption using multi-layer coconut coir fibers, EJTA., 3, 1-8.
  29. Oldham, D. J., Egan, C. A., Cookson, R. D., 2011, Sustainable acoustic absorbers form the biomass, Applied Acoustics, 72, 350-363. https://doi.org/10.1016/j.apacoust.2010.12.009
  30. Park S. U., Koo, K. A., Kong, W. S., 2016, Potential impact of climate change on distribution of warm temperate evergreen broad-leaved trees in the Korean Peninsula, J. Korean Geographical Society, 51, 201-217.
  31. Taban, E., Khavanin, A., Jafari, A. J., Faridan, M., Tabrizi, A. K., 2019, Experimental and mathematical survey of sound absorption performance of data palm fibers, Heliyon, 5, 1-8. https://doi.org/10.1016/j.heliyon.2019.e01977
  32. Vashum, K. T., 2012, Methods to estimate above-ground biomass and carbon stock in natural forests - a review, J. Ecosyst Ecogr., 2, 1-7. https://doi.org/10.4172/2157-7625.1000116
  33. Won, K. R., Hong, N. E., Kang, S. U., Park, S. B., Byeon, H. S., 2015, Sound absorption property of carbonized medium density fiber boards at different carbonizing temperatures, J. Korean Wood Sci. Technol., 43, 206-213. https://doi.org/10.5658/WOOD.2015.43.2.206