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AN OVERLAPPING DOMAIN DECOMPOSITION

METHOD WITH A VERTEX-BASED COARSE SPACE

FOR RAVIART–THOMAS VECTOR FIELDS

Duk-Soon Oh

Abstract. In this paper, we propose a two-level overlapping do-
main decomposition preconditioner for three dimensional vector
field problems posed in H(div). We introduce a new coarse compo-
nent, which reduces the computational complexity, associated with
the coarse vertices. Numerical experiments are also presented.

1. Introduction

We consider the following vector field problem posed in H0(div; Ω) in
a bounded polyhedral domain Ω in R3: Find u ∈ H0(div; Ω) such that

(1.1) a(u,v) = (g,v), ∀v ∈ H0(div; Ω),

where

a(u,v) :=

∫
Ω
(α divudiv v + β u · v) dx, (g,v) :=

∫
Ω
g · v dx.

Here, the Hilbert spaceH0(div; Ω) is the subspace ofH(div; Ω), the space

of vector field u ∈
(
L2(Ω)

)3
with divu ∈ L2(Ω), with vanishing normal

components on the boundary. We will assume that g ∈
(
L2(Ω)

)3
and

that α (∈ L∞(Ω)) is nonnegative and β (∈ L∞(Ω)) is strictly positive.
The model problem introduced in (1.1) is arising from a first-order

system of least-squares formulation; see [8] for more detail. We also
note that fast solvers for H(div) problems are essential in other appli-
cations, e.g., a sequential regularization method for the Navier-Stokes
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equations [19], a pseudostress-velocity formulation for the Stokes equa-
tions [9], a mixed method for Reissner–Mindlin plates [1], a mixed form
for Brinkman problems [25].

Fast solution techniques for H(div) problems are introduced in [2–
6, 14–17, 20–23, 26]. Among them, overlapping type domain decompo-
sition methods have been considered in [15, 21]. In [15], the standard
way, coarse finite elements on the coarse grid, has been considered in
the construction of the coarse component. However, the technique only
works well for the problems with constant coefficients. With regard to
the coefficients with jumps, a new type of method, also known as the
generalized Dryja–Smith–Widlund (GDSW) method, has been applied
in [21]. The GDSW type approach for overlapping domain decompo-
sition methods was first introduced for solving almost incompressible
elasticity problems in [11] and successfully developed for other prob-
lems, e.g., Reissner–Mindlin plate problems; see [18].

The main goal of this paper is to design the coarse component, which
is an alternative to those considered in [15,21], with less computational
costs when applying the coarse component. The idea of small coarse
spaces has been pioneered by Dohrmann and Widlund for the standard
second order elliptic problems and compressible linear elasticity prob-
lems in [12]. Later, the method has been widely extended and adjusted;
see [10,13] and references therein. We will apply a similar method based
on coarse vertices to our model problem. In case of many subdomains or
multiscale problems, the size of the coarse component will be consider-
ably lager than the sizes of the local components. This might yield a bot-
tleneck in the parallel computation, a nature of domain decomposition
methods. Thus, a coarse component with less computational complexity
is essential. With this point of view, we focus on the computational cost
for the coarse component not for the comprehensive algorithm.

The rest of this paper is organized as follows. In section 2, we intro-
duce the discrete problem discretized with the Raviart–Thomas finite
element. We next define the domain decomposition algorithm in section
3. Finally, we present numerical experiments in section 4.

2. The discrete problem

Let Th be a triangulation of Ω into hexahedral element. We discretize
the model problem (1.1) using the lowest order hexahedral Raviart–
Thomas finite element conforming in H(div; Ω). On each hexahedral



A DD method for RT vector fields 57

element T ∈ Th, the finite element has the following shape: a1 + b1x
a2 + b2y
a3 + b3z

 ,

where ai, bi ∈ R for i = 1, 2, 3. Here, the six constants, ai’s and bi’s, are
completely determined by degrees of freedom associated with the face f
of the element T given by

λf (u) :=
1

|f |

∫
f
u · n dS.

For more detail, see [7, Chapter 3].
In order to obtain the discrete algebraic system, we restrict the model

problem (1.1) to the finite element space. We then have following linear
system:

(2.1) Au = g,

where A is the stiffness matrix, u is the vector of unknowns, and g is
the right-hand side vector obtained from g.

We remark that our algorithms and results are similarly valid with
minimal modifications for tetrahedral elements.

3. Overlapping domain decomposition method

We first divide the domain Ω into N nonoverlapping subdomains
Ωi, i = 1, 2, · · · , N . The nonoverlapping subdomains are then expanded
by adding several element layers to form overlapping subdomains, Ω′

i, i =
1, 2, · · · , N . We consider a two-level overlapping domain decomposition
preconditioner defined by

M−1 = RT
0 A

−1
0 R0 +

N∑
i=1

RT
i A

−1
i Ri

for solving (2.1). Here, A0 is associated with the coarse problem and Ai’s
are related to local subproblems defined in Ω′

i. Each action of A−1
i , i =

0, · · ·N can be implemented using direct methods, e.g., Cholesky fac-
torization. Once the factorizations are available, we can apply forward
and backward substituting methods in each iteration. Hence, the num-
ber of nonzero elements in the triangular systems will be important in
the computation. The restriction operators R0 and Ri’s restrict the
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whole problem to the coarse space and the corresponding local spaces,
respectively. For more detail, see [24, Chapter 3].

3.1. Local components

The restriction operator Ri is a rectangular matrix which consists
of 0 or 1 and extracts all degrees of freedom related to the extended
subdomain Ω′

i. The operator Ai is defined by the following Galerkin
product:

Ai = RiAR
T
i .

We note that Ai is just a submatrix of A and we do not need any
matrix multiplications since every computation can be equivalently im-
plemented by suitable indexing.

3.2. The coarse component

We first introduce the interface Γ defined by

Γ =

(
N⋃
i=0

∂Ωi

)∖
∂Ω.

The traditional GDSW methods introduced in [21] are based on the
discrete harmonic extension associated with the coarse face.

For Fij = Ωi ∩ Ωj , the local stiffness matrix related to Ωi and Ωj is
defined by 

A
(i)
II A

(i)
IFij

A
(j)
II A

(j)
IFij

A
(i)
FijI

A
(j)
FijI

AFijFij

 .

We consider uTFij
= [1, 1, · · · , 1] and the discrete harmonic extensions

u
(i)
I = −A

(i)
II

−1
A

(i)
IFij

uFij ,

u
(j)
I = −A

(j)
II

−1
A

(j)
IFij

uFij .

We then define uij as the extension by zero from the space of the degrees
of freedom associated with Ωi∪Fij∪Ωj to that of the degrees of freedom
for Ω. Then, the rows of the restriction matrix R0 are given by all
possible uij ’s. The coarse matrix A0 is then obtained by the Galerkin
product

A0 := R0AR
T
0 .

For more detail, see [20,21].
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We now consider a vertex-based method. Let Fh be defined by the
set of all interior faces associated with the triangulation Th. For a given
face f ∈ Fh, let us denote by cf the center of gravity of f . We consider
coarse vertices P1, · · · , Pm and the following sets associated with the
coarse vertices:

Vk :=

{
f : f ∈ Fh ∧ f ⊂ Γ, argmin

1≤i≤m
d(cf , Pi) = k

}
,

where d(a, b) is the Euclidean distance between a and b. If argmin gives
more than one indices, we take the smallest index. We will also denote
by Ik :=

{
k(1), · · · , k(l)

}
the set of indices of subdomains that share Pk

in common. Then, the local submatrix associated with Pk is given by
Ak(1)

II Ak(1)

IVk

. . .
...

Ak(l)

II Ak(l)

IVk

Ak(1)

VkI
· · · Ak(l)

VkI
AVkVk

 .

In a similar way to the face-based method, we consider the following
discrete harmonic extensions with uTVk

= [1, 1, · · · , 1]:

uk
(1)

I = −Ak(1)

II

−1
Ak(1)

IVk
uVk

,

· · ·

uk
(l)

I = −Ak(l)

II

−1
Ak(l)

IVk
uVk

.

Then, the construction of R0 and A0 is analogous to that of the face-
based method.

4. Numerical experiments

We report the numerical results that illustrate the performance of
the overlapping domain decomposition preconditioner in this section.
We consider the domain Ω = (−1, 1)3 and decompose the domain with
4×4×4 identical subdomains. For each subdomain, we use the uniform
mesh consists of 8 × 8 × 8 cubes. The values of α and β, which are
piecewise constants, are given in a checkerboard pattern in Figure 1. We
use the lowest order Raviart–Thomas finite element for the discretized
problem. We solve the resulting linear system using the preconditioned
conjugate gradient method. The iterations are stopped when the l2-
norm of the residual has been reduced by a factor of 10−6.
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Figure 1. Checkerboard distribution of the coefficients.

In the first set of experiments, we fix the relative overlap H/δ and
use different values of H/h with several pairs of coefficient distributions.
Here, H and h are the edge lengths of subdomains and elements, respec-
tively. The parameter δ is measured by the overlap between neighboring
subdomains. The results are shown in the Tables 1 and 2. It is observed
that the method is robust to jumps of the coefficients.

Table 1. Condition numbers and iteration counts. αi = 1 or spec-
ified values as indicated in a checkerboard pattern, βi ≡ 1 and
H
δ
= 4

αi = 100 αi = 10 αi = 1 αi = 0.1 αi = 0.01

H/h cond iters cond iters cond iters cond iters cond iters

8 12.02 15 18.34 18 16.61 18 9.29 16 8.27 14

4 11.89 17 15.78 19 16.53 20 9.90 18 8.32 17

Table 2. Condition numbers and iteration counts. βi = 1 or spec-
ified values as indicated in a checkerboard pattern, αi ≡ 1 and
H
δ
= 4

βi = 100 βi = 10 βi = 1 βi = 0.1 βi = 0.01

H/h cond iters cond iters cond iters cond iters cond iters

8 12.49 19 11.19 18 16.61 18 17.37 19 16.21 18

4 12.61 21 11.26 20 16.53 20 15.54 20 16.15 20

We next fix the value H/h and vary H/δ in the second set. Other
general settings are similar to those of the first set of experiments. The
results are reported in Tables 3 and 4. The condition numbers and
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iteration counts are insensitive to the jumps of the coefficients. Also,
the condition numbers grow as H/δ increases.

Table 3. Condition numbers and iteration counts. αi = 1 or spec-
ified values as indicated in a checkerboard pattern, βi ≡ 1 and
H
h

= 8

αi = 100 αi = 10 αi = 1 αi = 0.1 αi = 0.01

H/δ cond iters cond iters cond iters cond iters cond iters

4 21.09 17 21.24 19 20.49 20 18.72 20 14.93 18

2 12.02 15 18.34 18 16.61 18 9.29 16 8.27 14

Table 4. Condition numbers and iteration counts. βi = 1 or spec-
ified values as indicated in a checkerboard pattern, αi ≡ 1 and
H
h

= 8

βi = 100 βi = 10 βi = 1 βi = 0.1 βi = 0.01

H/δ cond iters cond iters cond iters cond iters cond iters

4 24.77 26 20.41 22 20.49 20 27.80 23 34.63 23

2 12.49 19 11.19 18 16.61 18 17.37 19 16.21 18

Finally, we compare the performance of the vertex-based GDSW
coarse space with that of the traditional GDSW coarse space. As we
see in the Tables 5 and 6, the condition numbers of the vertex-based
method are almost twice as compared to the traditional method. Also,
vertex-based method has a few more iteration counts. This is expected
since the computational costs are lower when acting the coarse compo-
nent in the preconditioner; see Table 7. Here, A0 is the coarse matrix
and L0 is obtained from a Cholesky factorization of A0. We see that
the number of nonzero elements, which play a critical role in the sparse
matrix computation, has been reduced substantially.

Table 5. Condition numbers and iteration counts. αi = 1 or spec-
ified values as indicated in a checkerboard pattern, βi ≡ 1, H

h
= 8,

and H
δ
= 4

αi = 100 αi = 10 αi = 1 αi = 0.1 αi = 0.01

method cond iters cond iters cond iters cond iters cond iters

face-based 10.89 14 10.89 14 11.16 17 10.73 16 10.54 15

vertex-based 21.09 17 21.24 19 20.49 20 18.72 20 14.93 18
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Table 6. Condition numbers and iteration counts. βi = 1 or spec-
ified values as indicated in a checkerboard pattern, αi ≡ 1, H

h
= 8,

and H
δ
= 4

βi = 100 βi = 10 βi = 1 βi = 0.1 βi = 0.01

method cond iters cond iters cond iters cond iters cond iters

face-based 10.72 19 11.75 18 11.16 17 12.88 16 13.69 17

vertex-based 24.77 26 20.41 22 20.49 20 27.80 23 34.63 23

Table 7. The numbers of nonzero elements in A0 and L0 for each
method.

method A0 L0

face-based 2160 5245

vertex-based 2197 3064
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