AN OVERLAPPING DOMAIN DECOMPOSITION METHOD WITH A VERTEX-BASED COARSE SPACE FOR RAVIART-THOMAS VECTOR FIELDS

Duk-Soon Oh

Abstract

In this paper, we propose a two-level overlapping domain decomposition preconditioner for three dimensional vector field problems posed in H (div). We introduce a new coarse component, which reduces the computational complexity, associated with the coarse vertices. Numerical experiments are also presented.

1. Introduction

We consider the following vector field problem posed in $H_{0}(\operatorname{div} ; \Omega)$ in a bounded polyhedral domain Ω in \mathbb{R}^{3} : Find $\boldsymbol{u} \in H_{0}(\operatorname{div} ; \Omega)$ such that

$$
\begin{equation*}
a(\boldsymbol{u}, \boldsymbol{v})=(\boldsymbol{g}, \boldsymbol{v}), \quad \forall \boldsymbol{v} \in H_{0}(\operatorname{div} ; \Omega) \tag{1.1}
\end{equation*}
$$

where

$$
a(\boldsymbol{u}, \boldsymbol{v}):=\int_{\Omega}(\alpha \operatorname{div} \boldsymbol{u} \operatorname{div} \boldsymbol{v}+\beta \boldsymbol{u} \cdot \boldsymbol{v}) d x, \quad(\boldsymbol{g}, \boldsymbol{v}):=\int_{\Omega} \boldsymbol{g} \cdot \boldsymbol{v} d x
$$

Here, the Hilbert space $H_{0}(\operatorname{div} ; \Omega)$ is the subspace of $H(\operatorname{div} ; \Omega)$, the space of vector field $\boldsymbol{u} \in\left(L^{2}(\Omega)\right)^{3}$ with $\operatorname{div} \boldsymbol{u} \in L^{2}(\Omega)$, with vanishing normal components on the boundary. We will assume that $\boldsymbol{g} \in\left(L^{2}(\Omega)\right)^{3}$ and that $\alpha\left(\in L^{\infty}(\Omega)\right)$ is nonnegative and $\beta\left(\in L^{\infty}(\Omega)\right)$ is strictly positive.

The model problem introduced in (1.1) is arising from a first-order system of least-squares formulation; see [8] for more detail. We also note that fast solvers for H (div) problems are essential in other applications, e.g., a sequential regularization method for the Navier-Stokes

[^0]equations [19], a pseudostress-velocity formulation for the Stokes equations [9], a mixed method for Reissner-Mindlin plates [1], a mixed form for Brinkman problems [25].

Fast solution techniques for H (div) problems are introduced in [2-$6,14-17,20-23,26]$. Among them, overlapping type domain decomposition methods have been considered in [15,21]. In [15], the standard way, coarse finite elements on the coarse grid, has been considered in the construction of the coarse component. However, the technique only works well for the problems with constant coefficients. With regard to the coefficients with jumps, a new type of method, also known as the generalized Dryja-Smith-Widlund (GDSW) method, has been applied in [21]. The GDSW type approach for overlapping domain decomposition methods was first introduced for solving almost incompressible elasticity problems in [11] and successfully developed for other problems, e.g., Reissner-Mindlin plate problems; see [18].

The main goal of this paper is to design the coarse component, which is an alternative to those considered in $[15,21]$, with less computational costs when applying the coarse component. The idea of small coarse spaces has been pioneered by Dohrmann and Widlund for the standard second order elliptic problems and compressible linear elasticity problems in [12]. Later, the method has been widely extended and adjusted; see $[10,13]$ and references therein. We will apply a similar method based on coarse vertices to our model problem. In case of many subdomains or multiscale problems, the size of the coarse component will be considerably lager than the sizes of the local components. This might yield a bottleneck in the parallel computation, a nature of domain decomposition methods. Thus, a coarse component with less computational complexity is essential. With this point of view, we focus on the computational cost for the coarse component not for the comprehensive algorithm.

The rest of this paper is organized as follows. In section 2, we introduce the discrete problem discretized with the Raviart-Thomas finite element. We next define the domain decomposition algorithm in section 3 . Finally, we present numerical experiments in section 4.

2. The discrete problem

Let \mathcal{T}_{h} be a triangulation of Ω into hexahedral element. We discretize the model problem (1.1) using the lowest order hexahedral RaviartThomas finite element conforming in $H(\operatorname{div} ; \Omega)$. On each hexahedral
element $T \in \mathcal{T}_{h}$, the finite element has the following shape:

$$
\left(\begin{array}{l}
a_{1}+b_{1} x \\
a_{2}+b_{2} y \\
a_{3}+b_{3} z
\end{array}\right)
$$

where $a_{i}, b_{i} \in \mathbb{R}$ for $i=1,2,3$. Here, the six constants, a_{i} 's and b_{i} 's, are completely determined by degrees of freedom associated with the face f of the element T given by

$$
\lambda_{f}(\boldsymbol{u}):=\frac{1}{|f|} \int_{f} \boldsymbol{u} \cdot \boldsymbol{n} d S
$$

For more detail, see [7, Chapter 3].
In order to obtain the discrete algebraic system, we restrict the model problem (1.1) to the finite element space. We then have following linear system:

$$
\begin{equation*}
A u=g \tag{2.1}
\end{equation*}
$$

where A is the stiffness matrix, u is the vector of unknowns, and g is the right-hand side vector obtained from \boldsymbol{g}.

We remark that our algorithms and results are similarly valid with minimal modifications for tetrahedral elements.

3. Overlapping domain decomposition method

We first divide the domain Ω into N nonoverlapping subdomains $\Omega_{i}, i=1,2, \cdots, N$. The nonoverlapping subdomains are then expanded by adding several element layers to form overlapping subdomains, $\Omega_{i}^{\prime}, i=$ $1,2, \cdots, N$. We consider a two-level overlapping domain decomposition preconditioner defined by

$$
M^{-1}=R_{0}^{T} A_{0}^{-1} R_{0}+\sum_{i=1}^{N} R_{i}^{T} A_{i}^{-1} R_{i}
$$

for solving (2.1). Here, A_{0} is associated with the coarse problem and $A_{i}{ }^{\prime}$ s are related to local subproblems defined in Ω_{i}^{\prime}. Each action of $A_{i}^{-1}, i=$ $0, \cdots N$ can be implemented using direct methods, e.g., Cholesky factorization. Once the factorizations are available, we can apply forward and backward substituting methods in each iteration. Hence, the number of nonzero elements in the triangular systems will be important in the computation. The restriction operators R_{0} and R_{i} 's restrict the
whole problem to the coarse space and the corresponding local spaces, respectively. For more detail, see [24, Chapter 3].

3.1. Local components

The restriction operator R_{i} is a rectangular matrix which consists of 0 or 1 and extracts all degrees of freedom related to the extended subdomain Ω_{i}^{\prime}. The operator A_{i} is defined by the following Galerkin product:

$$
A_{i}=R_{i} A R_{i}^{T}
$$

We note that A_{i} is just a submatrix of A and we do not need any matrix multiplications since every computation can be equivalently implemented by suitable indexing.

3.2. The coarse component

We first introduce the interface Γ defined by

$$
\Gamma=\left(\bigcup_{i=0}^{N} \partial \Omega_{i}\right) \backslash \partial \Omega
$$

The traditional GDSW methods introduced in [21] are based on the discrete harmonic extension associated with the coarse face.

For $F_{i j}=\bar{\Omega}_{i} \cap \bar{\Omega}_{j}$, the local stiffness matrix related to Ω_{i} and Ω_{j} is defined by

$$
\left[\begin{array}{ccc}
A_{I I}^{(i)} & & A_{I F_{i j}}^{(i)} \\
& A_{I I}^{(j)} & A_{I F_{i j}}^{(j)} \\
A_{F_{i j} I}^{(i)} & A_{F_{i j} I}^{(j)} & A_{F_{i j} F_{i j}}
\end{array}\right]
$$

We consider $u_{F_{i j}}^{T}=[1,1, \cdots, 1]$ and the discrete harmonic extensions

$$
\begin{aligned}
& u_{I}^{(i)}=-A_{I I}^{(i)}{ }^{-1} A_{I F_{i j}}^{(i)} u_{F_{i j}}, \\
& u_{I}^{(j)}=-A_{I I}^{(j)-1} A_{I F_{i j}}^{(j)} u_{F_{i j}} .
\end{aligned}
$$

We then define $u_{i j}$ as the extension by zero from the space of the degrees of freedom associated with $\Omega_{i} \cup F_{i j} \cup \Omega_{j}$ to that of the degrees of freedom for Ω. Then, the rows of the restriction matrix R_{0} are given by all possible $u_{i j}$'s. The coarse matrix A_{0} is then obtained by the Galerkin product

$$
A_{0}:=R_{0} A R_{0}^{T}
$$

For more detail, see $[20,21]$.

We now consider a vertex-based method. Let \mathcal{F}_{h} be defined by the set of all interior faces associated with the triangulation \mathcal{T}_{h}. For a given face $f \in \mathcal{F}_{h}$, let us denote by c_{f} the center of gravity of f. We consider coarse vertices P_{1}, \cdots, P_{m} and the following sets associated with the coarse vertices:

$$
V_{k}:=\left\{f: f \in \mathcal{F}_{h} \wedge f \subset \Gamma, \quad \underset{1 \leq i \leq m}{\operatorname{argmin}} d\left(c_{f}, P_{i}\right)=k\right\}
$$

where $d(a, b)$ is the Euclidean distance between a and b. If argmin gives more than one indices, we take the smallest index. We will also denote by $\mathcal{I}_{k}:=\left\{k^{(1)}, \cdots, k^{(l)}\right\}$ the set of indices of subdomains that share P_{k} in common. Then, the local submatrix associated with P_{k} is given by

$$
\left[\begin{array}{cccc}
A_{I I}^{k^{(1)}} & & & A_{I V_{k}}^{k^{(1)}} \\
& \ddots & & \vdots \\
& & A_{I I}^{k^{(l)}} & A_{I V_{k}}^{k^{(l)}} \\
A_{V_{k} I}^{k^{(1)}} & \cdots & A_{V_{k} I}^{k^{(l)}} & A_{V_{k} V_{k}}
\end{array}\right]
$$

In a similar way to the face-based method, we consider the following discrete harmonic extensions with $u_{V_{k}}^{T}=[1,1, \cdots, 1]$:

$$
\begin{aligned}
u_{I}^{k^{(1)}} & =-A_{I I}^{k^{(1)-1}} A_{I V_{k}}^{k^{(1)}} u_{V_{k}} \\
& \cdots \\
u_{I}^{k^{(l)}} & =-A_{I I}^{k^{(l)-1}} A_{I V_{k}}^{k^{(l)}} u_{V_{k}}
\end{aligned}
$$

Then, the construction of R_{0} and A_{0} is analogous to that of the facebased method.

4. Numerical experiments

We report the numerical results that illustrate the performance of the overlapping domain decomposition preconditioner in this section. We consider the domain $\Omega=(-1,1)^{3}$ and decompose the domain with $4 \times 4 \times 4$ identical subdomains. For each subdomain, we use the uniform mesh consists of $8 \times 8 \times 8$ cubes. The values of α and β, which are piecewise constants, are given in a checkerboard pattern in Figure 1. We use the lowest order Raviart-Thomas finite element for the discretized problem. We solve the resulting linear system using the preconditioned conjugate gradient method. The iterations are stopped when the l^{2} norm of the residual has been reduced by a factor of 10^{-6}.

Figure 1. Checkerboard distribution of the coefficients.

In the first set of experiments, we fix the relative overlap H / δ and use different values of H / h with several pairs of coefficient distributions. Here, H and h are the edge lengths of subdomains and elements, respectively. The parameter δ is measured by the overlap between neighboring subdomains. The results are shown in the Tables 1 and 2. It is observed that the method is robust to jumps of the coefficients.

TABLE 1. Condition numbers and iteration counts. $\alpha_{i}=1$ or specified values as indicated in a checkerboard pattern, $\beta_{i} \equiv 1$ and $\frac{H}{\delta}=4$

	$\alpha_{i}=100$		$\alpha_{i}=10$		$\alpha_{i}=1$		$\alpha_{i}=0.1$		$\alpha_{i}=0.01$	
H / h	cond	iters								
8	12.02	15	18.34	18	16.61	18	9.29	16	8.27	14
4	11.89	17	15.78	19	16.53	20	9.90	18	8.32	17

Table 2. Condition numbers and iteration counts. $\beta_{i}=1$ or specified values as indicated in a checkerboard pattern, $\alpha_{i} \equiv 1$ and $\frac{H}{\delta}=4$

	$\beta_{i}=100$		$\beta_{i}=10$		$\beta_{i}=1$		$\beta_{i}=0.1$		$\beta_{i}=0.01$	
H / h	cond	iters								
8	12.49	19	11.19	18	16.61	18	17.37	19	16.21	18
4	12.61	21	11.26	20	16.53	20	15.54	20	16.15	20

We next fix the value H / h and vary H / δ in the second set. Other general settings are similar to those of the first set of experiments. The results are reported in Tables 3 and 4 . The condition numbers and
iteration counts are insensitive to the jumps of the coefficients. Also, the condition numbers grow as H / δ increases.

TABLE 3. Condition numbers and iteration counts. $\alpha_{i}=1$ or specified values as indicated in a checkerboard pattern, $\beta_{i} \equiv 1$ and $\frac{H}{h}=8$

	$\alpha_{i}=100$		$\alpha_{i}=10$		$\alpha_{i}=1$		$\alpha_{i}=0.1$		$\alpha_{i}=0.01$	
H / δ	cond	iters								
4	21.09	17	21.24	19	20.49	20	18.72	20	14.93	18
2	12.02	15	18.34	18	16.61	18	9.29	16	8.27	14

Table 4. Condition numbers and iteration counts. $\beta_{i}=1$ or specified values as indicated in a checkerboard pattern, $\alpha_{i} \equiv 1$ and $\frac{H}{h}=8$

	$\beta_{i}=100$		$\beta_{i}=10$		$\beta_{i}=1$		$\beta_{i}=0.1$		$\beta_{i}=0.01$	
H / δ	cond	iters								
4	24.77	26	20.41	22	20.49	20	27.80	23	34.63	23
2	12.49	19	11.19	18	16.61	18	17.37	19	16.21	18

Finally, we compare the performance of the vertex-based GDSW coarse space with that of the traditional GDSW coarse space. As we see in the Tables 5 and 6 , the condition numbers of the vertex-based method are almost twice as compared to the traditional method. Also, vertex-based method has a few more iteration counts. This is expected since the computational costs are lower when acting the coarse component in the preconditioner; see Table 7. Here, A_{0} is the coarse matrix and L_{0} is obtained from a Cholesky factorization of A_{0}. We see that the number of nonzero elements, which play a critical role in the sparse matrix computation, has been reduced substantially.

TABLE 5. Condition numbers and iteration counts. $\alpha_{i}=1$ or specified values as indicated in a checkerboard pattern, $\beta_{i} \equiv 1, \frac{H}{h}=8$, and $\frac{H}{\delta}=4$

	$\alpha_{i}=100$		$\alpha_{i}=10$		$\alpha_{i}=1$		$\alpha_{i}=0.1$		$\alpha_{i}=0.01$	
method	cond	iters								
face-based	10.89	14	10.89	14	11.16	17	10.73	16	10.54	15
vertex-based	21.09	17	21.24	19	20.49	20	18.72	20	14.93	18

Table 6. Condition numbers and iteration counts. $\beta_{i}=1$ or specified values as indicated in a checkerboard pattern, $\alpha_{i} \equiv 1, \frac{H}{h}=8$, and $\frac{H}{\delta}=4$

	$\beta_{i}=100$		$\beta_{i}=10$		$\beta_{i}=1$		$\beta_{i}=0.1$		$\beta_{i}=0.01$	
method	cond	iters								
face-based	10.72	19	11.75	18	11.16	17	12.88	16	13.69	17
vertex-based	24.77	26	20.41	22	20.49	20	27.80	23	34.63	23

TABLE 7. The numbers of nonzero elements in A_{0} and L_{0} for each method.

method	A_{0}	L_{0}
face-based	2160	5245
vertex-based	2197	3064

References

[1] D. N. Arnold, R. S. Falk, and R. Winther, Preconditioning discrete approximations of the Reissner-Mindlin plate model, RAIRO Modél. Math. Anal. Numér., 31 (1997), no. 4, 517-557.
[2] D. N. Arnold, R. S. Falk, and R. Winther, Preconditioning in H (div) and applications, Math. Comp., 66 (1997), no. 219, 957-984.
[3] D. N. Arnold, R. S. Falk, and R. Winther, Multigrid preconditioning in $H(\mathrm{div})$ on non-convex polygons, Comput. Appl. Math., 17 (1998), no. 3, 303-315.
[4] D. N. Arnold, R. S. Falk, and R. Winther, Multigrid in $H($ div) and $H(\mathrm{curl})$, Numer. Math., 85 (2000), no. 2, 197-217.
[5] S. C. Brenner and D.-S. Oh, Multigrid methods for H (div) in three dimensions with nonoverlapping domain decomposition smoothers, Numer. Linear Algebra Appl., 25 (2018), no. 5, e2191, 14.
[6] S. C. Brenner and D.-S. Oh, A smoother based on nonoverlapping domain decomposition methods for H (div) problems: a numerical study, in Domain decomposition methods in science and engineering XXIV, Springer, Cham, 2018, 523-531.
[7] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, SpringerVerlag, New York, 1991.
[8] Z. Cai, R. D. Lazarov, T. A. Manteuffel, and S. F. McCormick, First-order system least squares for second-order partial differential equations: Part I, SIAM J. Numer. Anal., 31 (1994), no. 6, 1785-1799.
[9] Z. Cai, C. Tong, P. S. Vassilevski, and C. Wang, Mixed finite element methods for incompressible flow: stationary Stokes equations, Numer. Methods Partial Differential Equations, 26 (2010), no. 4, 957-978.
[10] C. R. Dohrmann, K. H. Pierson, and O. B. Widlund, Vertex-based preconditioners for the coarse problems of $B D D C$, SIAM J. Sci. Comput., 41 (2019), no. 5, A3021-A3044.
[11] C. R. Dohrmann and O. B. Widlund, An overlapping Schwarz algorithm for almost incompressible elasticity, SIAM J. Numer. Anal., 47 (2009), no. 4, 28972923.
[12] C. R. Dohrmann and O. B. Widlund, On the design of small coarse spaces for domain decomposition algorithms, SIAM J. Sci. Comput., 39 (2017), no. 4, A1466A1488.
[13] A. Heinlein, C. Hochmuth, and A. Klawonn, Reduced dimension GDSW coarse spaces for monolithic Schwarz domain decomposition methods for incompressible fluid flow problems, Internat. J. Numer. Methods Engrg., 121 (2020), no. 6, 1101-1119.
[14] R. Hiptmair, Multigrid method for H (div) in three dimensions, Electron. Trans. Numer. Anal., 6 (1997), no. Dec., 133-152.
[15] R. Hiptmair and A. Toselli, Overlapping and multilevel Schwarz methods for vector valued elliptic problems in three dimensions, in Parallel solution of partial differential equations, Springer, New York, 2000, 181-208.
[16] R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in $\mathbf{H}(\mathbf{c u r l})$ and H(div) spaces, SIAM J. Numer. Anal., 45 (2007), no. 6, 2483-2509.
[17] T. V. Kolev and P. S. Vassilevski, Parallel auxiliary space $A M G$ solver for H (div) problems, SIAM J. Sci. Comput., 34 (2012), no. 6, A3079-A3098.
[18] J. H. Lee, Overlapping domain decomposition methods for numerically thin Reissner-Mindlin plates approximated with the Falk-Tu elements, SIAM J. Numer. Anal., 51 (2013), no. 1, 24-46.
[19] P. Lin, A sequential regularization method for time-dependent incompressible Navier-Stokes equations, SIAM J. Numer. Anal., 34 (1997), no. 3, 1051-1071.
[20] D.-S. Oh, An alternative coarse space method for overlapping Schwarz preconditioners for Raviart-Thomas vector fields, in Domain decomposition methods in science and engineering XX, Heidelberg, 2013, 361-367.
[21] D.-S. Oh, An overlapping Schwarz algorithm for Raviart-Thomas vector fields with discontinuous coefficients, SIAM J. Numer. Anal., 51 (2013), no. 1, 297321.
[22] D.-S. Oh, A BDDC preconditioner for problems posed in H (div) with deluxe scaling, in Domain decomposition methods in science and engineering XXII, Springer, Cham, 2016, 355-361.
[23] D.-S. Oh, O. B. Widlund, S. Zampini, and C. R. Dohrmann, BDDC algorithms with deluxe scaling and adaptive selection of primal constraints for RaviartThomas vector fields, Math. Comp., 87 (2018), no. 310, 659-692.
[24] A. Toselli and O. Widlund, Domain decomposition methods-algorithms and theory, Springer-Verlag, Berlin, 2005.
[25] P. S. Vassilevski and U. Villa, A block-diagonal algebraic multigrid preconditioner for the Brinkman problem, SIAM J. Sci. Comput., 35 (2013), no. 5, S3-S17.
[26] B. I. Wohlmuth, A. Toselli, and O. B. Widlund, An iterative substructuring method for Raviart-Thomas vector fields in three dimensions, SIAM J. Numer. Anal., 37 (2000), no. 5, 1657-1676.

Duk-Soon Oh
Department of Mathematics
Chungnam National University
Daejeon 34134, Republic of Korea
E-mail: duksoon@cnu.ac.kr

[^0]: Received December 02, 2022; Accepted February 27, 2023.
 2020 Mathematics Subject Classification: 65F08, 65F10, 65N30, 65N55.
 Key words and phrases: overlapping domain decomposition, H(div), RaviartThomas element.

 This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1F1A1A01072168).

