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GENERALIZED INTERTWINING LINEAR OPERATORS

WITH ISOMETRIES

Hyuk Han

Abstract. In this paper, we show that for an isometry on a Ba-
nach space the analytic spectral subspace coincides with the alge-
braic spectral subspace. Using this result, we have the following
result. Let T be a bounded linear operator with property (δ) on
a Banach space X. And let S be an isometry on a Banach space
Y . Then every generalized intertwining linear operator θ : X → Y
for (S, T ) is continuous if and only if the pair (S, T ) has no critical
eigenvalue.

1. Preliminaries

Throughout this paper we shall use the standard notions and some
basic results on the theory of local spectral theory. Let X be a Banach
space over the complex plane C and let L(X) denote the Banach algebra
of all bounded linear operators on a Banach space X. Given an operator
T ∈ L(X), Lat(T ) denotes the collection of all closed T -invariant linear
subspaces of X, and for an Y ∈ Lat(T ), T |Y denotes the restriction of
T on Y , and σ(T ), ρ(T ) denote the spectrum and the resolvent set of
T , respectively.

Definition 1.1. Let T : X → X be a linear operator on a Banach
space X. Let F be a subset of the complex plane C. Consider the class
of all linear subspaces Y of X which satisfy (T −λ)Y = Y for all λ /∈ F ,
let ET (F ) denote the algebraic linear span of all such subspaces Y of X.
Then ET (F ) is called an algebraic spectral subspace of T .
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We may define ET (F ) as maximal among all linear subspaces Y of X
for which (T − λ)Y = Y for which λ /∈ F . In general, the space ET (F )
need not to be closed.

A linear subspace Z of X is called a T -divisible subspace if

(T − λ)Z = Z for all λ ∈ C.
Hence ET (∅) is precisely the largest T -divisible subspace.

Many important operators do not have non trivial divisible subspaces.
For example, hyponormal operators on Hilbert spaces do not have non-
trivial divisible subspaces.

In the next proposition, we collect a number of results on algebraic
spectral subspaces. These results are found in [10].

Proposition 1.2. Let T be a linear operator on a Banach space X
and let F ⊆ C. Then the following assertions hold:
(1) ET (F ) is a hyperinvariant subspace.
(2) ET (F ) = ET (F ∩ σ(T )).
(3) If x ∈ X satisfies (T−λ)x ∈ ET (F ) for some λ ∈ F , then x ∈ ET (F ).
(4) ET (

⋂
Fα) =

⋂
ET (Fα) for any family of subsets {Fα : α ∈ A} of C.

The local resolvent set ρT (x) of T at the point x ∈ X is defined as the
union of all open subsets U of C for which there is an analytic function
f : U → X which satisfies (T − λ)f(λ) = x for all λ ∈ U . The local
spectrum σT (x) of T at x is then defined as

σT (x) = C \ ρT (x).
Clearly, the local resolvent set ρT (x) is open, and the local spectrum
σT (x) is closed. For each x ∈ X, the function f(λ) : ρ(T ) → X defined
by f(λ) = (T −λ)−1x is analytic on ρ(T ) and satisfies (T −λ)f(λ) = x
for all λ ∈ ρ(T ). Hence the resolvent set ρ(T ) is always a subset of ρT (x)
and hence σT (x) is always a subset of σ(T ). The analytic solutions
occurring in the definition of the local resolvent set may be thought
as local extensions of the function (T − λ)−1x : ρ(T ) → X. There
is no uniqueness implied. Thus we need the following definition. An
operator T ∈ L(X) is said to have the single-valued extension property,
abbreviated SVEP, if for every open set U ⊆ C, the only analytic solution
f : U → X of the equation (T − λ)f(λ) = 0 for all λ ∈ U is the zero
function on U . Hence if T has the SVEP, then for each x ∈ X there is
the maximal analytic extension of (T − λ)−1x on ρT (x). For a closed
subset F of C, XT (F ) = {x ∈ X : σT (x) ⊆ F} is said to be an analytic
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spectral subspace of T . It is easy to see that XT (F ) is a hyperinvariant
subspace ofX, which generally is not closed. Analytic spectral subspaces
have been fundamental in the recent progress of local spectral theory, for
instance, in connection with functional models and invariant subspaces.

In the next proposition, we collect a number of results on analytic
spectral subspaces. These results are found in [10].

Proposition 1.3. Let T be a bounded linear operator on a Banach
space X and let F ⊆ C. Then the following assertions hold:
(1) XT (F ) = XT (F ∩ σ(T )).
(2) For all λ /∈ F , (T − λ)XT (F ) = XT (F ). That is, XT (F ) ⊆ ET (F ).
(3) If {Fα} is a family of subsets of C, then XT (

⋂
Fα) =

⋂
XT (Fα).

(4) T has the SVEP if and only if XT (∅) = {0}.

An operator T ∈ L(X) is called decomposable if for every open cov-
ering {U, V } of the complex plane C, there exist Y,Z ∈ Lat(T ) such
that

σ(T |Y ) ⊆ U, σ(T |Z) ⊆ V and Y + Z = X.

Decomposable operators are rich. For example, normal operators, spec-
tral operators in the sense of Dunford, operators with totally discon-
nected spectrums and hence compact operators are decomposable.

An operator T ∈ L(X) is said to have property (δ) if for every open
covering {U, V } of the complex plane C, and for each x ∈ X there exist
a pair of analytic functions f : C \ U → X, g : C \ V → X such that

(T − λ)f(λ) = u, for all λ ∈ C \ U,

(T − λ)g(λ) = v, for all λ ∈ C \ V ,

and

x = u+ v.

If T has the SVEP, then property (δ) simply means that

X = XT (U) +XT (V )

for every open covering {U, V } of the complex plane C. Albrecht and
Eschmeier showed that T satisfies (δ) if and only if T is similar to a
quotient of a decomposable operator. That is, if T : X → Y has property

(δ) then there exist a Banach space X̂ and a continuous linear surjection

q : X̂ → X and a decomposable operator T̂ ∈ L(X̂) with Tq = qT̂ [3].
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Let θ be a linear operator from a Banach space X into a Banach
space Y . The space

S(θ) = {y ∈ Y : there is a sequence xn → 0 in X and θxn → y}
is called the separating space of θ. It is easy to see that S(θ) is a closed
linear subspace of Y . By the closed graph theorem, θ is continuous if
and only if S(θ) = {0}. The following lemma is found in [12].

Lemma 1.4. Let X and Y be Banach spaces. If R is a continuous
linear operator from Y to a Banach space Z, and if θ : X → Y is a linear
operator, then (RS(θ))− = S(Rθ). In particular, Rθ is continuous if
and only if RS(θ) = {0}.

The next lemma states that a certain descending sequence of sepa-
rating space which obtained from θ via a countable family of continuous
linear operators is eventually constant. It is proved in [12].

Lemma 1.5 (Stability Lemma). Let θ : X0 → Y be a linear operator
between the Banach spaces X0 and Y with separating space S(θ), and
let ⟨Xi : i = 1, 2, . . .⟩ be a sequence of Banach spaces. If each Ti : Xi →
Xi−1 is continuous linear operator for i = 1, 2, . . . , then there is an
n0 ∈ N for which S(θT1T2 . . . Tn) = S(θT1T2 . . . Tn0) for all n ≥ n0.

Given a topological space Ω and a topological vector space X, we
denote by F(Ω) the collection of all closed subsets of Ω, and by S(X)
the collection of all closed linear subspaces of X. A mapping E(·) :
F(Ω) → S(X) is said to be a precapacity if E(∅) = {0} and E(F ) ⊆ E(G)
for all closed sets F, G ⊆ Ω with F ⊆ G. Given a precapacity E(·) :
F(Ω) → S(X), we say that E(·) is decomposable if

X = E(U) + E(V ) for every open cover {U, V } of Ω,

and that E(·) is stable if arbitrary intersections are preserved, that is,

E(
⋂

Fα) =
⋂

E(Fα)

for every family of closed subsets {Fα : α ∈ A} of Ω. A stable map is
called a spectral capacity if E(·) satisfies the following condition:

X =
∑
α

E(Gα) for every finite open cover {Gα : α ∈ A} of C.

If Ω is second countable, then it follows easily from Lindelöf’s covering
theorem that a precapacity is stable whenever intersections of countable
families of closed sets are preserved. We say that E(·) is order preserving
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if it preserves the inclusion order. Clearly a stable map is order preserv-
ing. It is well known that T is decomposable if and only if there exists
a spectral capacity E(·) such that E(F ) ∈ Lat(T ) and σ(T |E(F )) ⊆ F
for each closed set F ⊆ C. In this case the spectral capacity of a closed
subset F of C is uniquely determined and it is the analytic spectral
subspace XT (F ).

The following lemma, known as localization of the singularities, has
appeared in various form. We adopted in [8].

Proposition 1.6. LetX and Y be Banach spaces. Suppose that EX :
F(C) → S(X) is an order preserving map such that X = EX(U)+EX(V )
whenever {U, V } is an open cover of C. And suppose that EY : F(C) →
S(Y ) is a stable map. If θ : X → Y is a linear operator for which
S(θ|EX(F )) ⊆ EY (F ) for every F ∈ F(C), then there is a finite set
Λ ⊆ C for which S(θ) ⊆ EY (Λ).

The following theorem is a variation of the Mittag-Leffler Theorem
of Bourbaki. The theorem is found in [5].

Theorem 1.7 (Mittag-Leffler Theorem). Let ⟨Xn : n = 0, 1, 2, . . .⟩
be a sequence of complete metric spaces, and for n = 1, 2, . . . , let fn :
Xn → Xn−1 be a continuous map with fn(Xn) dense in Xn−1. Let
gn = f1 ◦ · · · ◦ fn. Then

⋂∞
n=1 gn(Xn) is dense in X0.

2. Generalized intertwining linear operators with isometry

We denote by C∞(C) the Fréchet algebra of all infinitely differentiable
complex valued functions φ(z), z = x1 + ix2, x1, x2 ∈ R, defined on the
complex plane C with the topology of uniform convergence of every
derivative on each compact subset of C. That is, with the topology
generated by a family of pseudo-norm

|φ|K,m = max
|p|≤m

sup
z∈K

|Dpφ(z)|,

where K is an arbitrary compact subset of C, m a non-negative integer,
p = (p1, p2), p1, p2 ∈ N, |p| = p1 + p2 and

Dpφ =
∂|p|φ

∂x1p1∂x2p2
, z = x1 + ix2.
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An operator T ∈ L(X) is called a generalized scalar operator if there ex-
ists a continuous algebra homomorphism Φ : C∞(C) → L(X) satisfying
Φ(1) = I, the identity operator on X, and Φ(z) = T where z denotes
the identity function on C. Such a continuous function Φ is in fact an
operator valued distribution and it is called a spectral distribution for T .
The class of generalized scalar operators was introduced by Colojoarǎ
and Foiaş [4]. Every linear operator on a finite dimensional space as well
as every spectral operator of finite type are generalized scalar operators.

It is well known that if T is invertible isometry then T is a generalized
scalar operator. For a generalized scalar operator it is well known that
XT (F ) = ET (F ) for all closed sets F ⊆ C.

The following proposition is in [10].

Proposition 2.1. Let T be a bounded linear operator on a Banach
space X. Suppose that ET (F ) is closed for all closed sets F ⊆ C. Then
the identity XT (F ) = ET (F ) holds for all closed sets F ⊆ C

Proposition 2.2. Let T be an isometry on a Banach space X. Then
for any closed set F of C,

XT (F ) = ET (F ).

Proof. If T is an invertible isometry, then T is a generalized scalar
operator. Hence The identity XT (F ) = ET (F ) holds for any closed set
F of C. Thus we may assume that T is a noninvertible isometry. By
Proposition 2.1, it is enough to show that ET (F ) is closed for any closed
set F of C. Let F ⊆ C be a given closed set. Suppose that there is a
λ /∈ F with |λ| < 1. If ET (F ) = {0} then the space ET (F ) is closed.

Hence we may assume that ET (F ) is nontrivial. Let W = ET (F ). Since
T − λ is bounded below, (T − λ)(W ) is closed. Therefore, we have

(T − λ)(W ) = W.

Hence (T −λ)|W is invertible. And hence λ /∈ σ(T |W ). It is well known
that for the spectrum of a noninvertible isometry is the entire unit disk.
Since |λ| < 1, T |W can not be a noninvertible isometry. Hence T |W is
an invertible isometry. Thus ET |W (F ) is closed in W . Since W is closed,
ET |W (F ) is closed in X. It is clear that

ET |W (F ) = ET (F ) ∩W = ET (F ).

Therefore, ET (F ) is closed in X. If there is no λ /∈ F with |λ| < 1, then
{λ ∈ C : |λ| < 1} ⊆ F . Since T is noninvertible isometry,

σ(T ) = {λ ∈ C : |λ| ≤ 1} ⊆ F.
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Therefore we have ET (F ) = X. Hence ET (F ) is closed in X.
In any case ET (F ) is closed for all closed F ⊆ C.

Hence for an isometry T , the above proposition allows us to combine
the analytic tools associated with the space XT (F ) with the algebraic
tools associated with the space ET (F ). Since an isometry has the single-
valued extension property, XT (∅) = ET (∅) = {0}. Hence, if T is an
isometry then T has no non-trivial divisible subspaces.

Let T and S be bounded linear operators on Banach spaces X and Y ,
respectively. A linear operator θ : X → Y is said to be an intertwining
linear operator for the pair (S, T ) if Sθ = θT . Let C(S, T ) denote
the commutator, C(S, T )θ = Sθ − θT . For a natural number n, define
C(S, T )n to be the n-th composition. That is,

C(S, T )nθ = C(S, T )n−1(Sθ − θT ) =

n∑
k=0

(
n

k

)
Skθ(−T )n−k.

Then we shall say that θ is a generalized intertwining linear operator
for (S, T ) if

∥C(S, T )nθ∥
1
n → 0 as n → ∞.

For this to make sense, C(S, T )nθ is continuous for some n, hence for all
sufficiently large n, is assumed.

The following lemma is found in [11].

Lemma 2.3. Let T and S be bounded linear operators on Banach
spaces X and Y , respectively. And let θ : X → Y be a linear operator.
If F ⊆ C satisfies C(S, T )nθET (F ) ⊆ ES(F ) for some n ∈ N, then
actually we have

θET (F ) ⊆ ES(F ).

Proposition 2.4. Let T be a bounded linear operator on a Banach
space X. And let S be an isometry on a Banach space Y . Then every
generalized intertwining linear operator θ : X → Y for (S, T ) necessarily
satisfies the following:

θXT (F ) ⊆ YS(F ) for all closed subsets F of C.

Proof. Since θ is a generalized intertwining linear operator for (S, T ),
there is k ∈ N such that C(S, T )kθ is continuous. By the assumption we
have

∥C(S, T )nC(S, T )kθ∥
1
n → 0 as n → ∞.
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Thus we may apply the proof of [4, Theorem 2.3.3] (this theorem remains
valid if the operator S on the range space Y is only assumed to have the
single valued extension property and closed space YS(F ) for all closed
F ⊆ C, this condition is certainly fulfilled in the case of an isometry).
Then for a given closed set F ⊆ C we have

C(S, T )kθXT (F ) ⊆ YS(F ).

Let R = T |XT (F ) and consider ER(F ). Since R−λ is surjective for any
λ /∈ F ,

XT (F ) = ER(F ).

Hence by the assumption,

C(S, T )kθER(F ) = C(S, T )kθ|XT (F )(ER(F )) ⊆ YS(F ) ⊆ ES(F ),

so that by the above lemma we have

θ|XT (F )(ER(F )) ⊆ ES(F ).

Since S is isometry, YS(F ) = ES(F ), by Proposition 2.2, that is

θXT (F ) ⊆ YS(F ).

This completes the proof.

Let T ∈ L(X) and S ∈ L(Y ) . A complex number λ ∈ C is said
to be a critical eigenvalue for the pair (S, T ) if (T − λ)X is of infinite
codimension in X and λ is an eigenvalue of S.

The following proposition is well known and tells us existence of dis-
continuous intertwining linear operators for (S, T ). The proof of next
proposition is in [12]

Proposition 2.5. Let T and S be bounded linear operators on Ba-
nach spaces X and Y , respectively. If (S, T ) has a critical eigenvalue,
then there is a discontinuous linear operator θ : X → Y with Sθ = θT .

Now we state and prove the following main theorem.

Theorem 2.6. Let T be a bounded linear operator with property (δ)
on a Banach space X. And let S be an isometry on a Banach space Y .
Then the following statements are equivalent:
(a) Every generalized intertwining linear operator θ : X → Y for (S, T )
is necessarily continuous.
(b) The pair (S, T ) has no critical eigenvalues.
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Proof. (a) ⇒ (b) By Proposition 2.5, it is clear.

(b) ⇒ (a) Assume that the condition (b) is fulfilled, and consider an
arbitrary generalized intertwining linear operator θ : X → Y for (S, T ).
To prove the continuity of θ, it suffices to construct a non-trivial poly-
nomial p such that p(S)S(θ) = {0}. Indeed if we do so, all injective
factors S − λ of p(S) may be removed from p(S); what is left still
annihilate S(θ). Thus we have obtained a polynomial p, all of whose
roots are eigenvalues of S. Since θ is a generalized intertwining linear
operator for (S, T ), there is a natural number n such that C(S, T )nθ is
continuous.

(case 1) n = 1

Suppose that C(S, T )θ is continuous, And suppose that there is a non-
trivial polynomial p such that p(S)S(θ) = {0} and all roots of p are
eigenvalues of S. Since Sθ − θT is continuous, p(S)θ − θp(T ) is also
continuous. By the assumption p(S)θ is continuous, so we have θp(T ) is
continuous. Let λ be a root of p. Since (S, T ) has no critical eigenval-
ues, (T − λ)X is of finite codimension in X. This means that p(T )X
has finite codimension in X. Hence the open mapping theorem implies
that p(T )X is closed and that p(T ) is an open mapping from X onto
p(T )X. Therefore, θ is continuous.

(case 2) n > 1

Suppose that C(S, T )nθ is continuous for n > 1. And suppose that
there is a non trivial polynomial p such that p(S)S(θ) = {0} and all
roots of p are eigenvalues of S. We define

θk = C(S, T )n−kθ

for k = 0, 1, . . . , n. Then θ0 = C(S, T )nθ is continuous and θn = θ.
Moreover, for all polynomial q and all k = 1, . . . , n, we have

θk−1q(T ) = C(S, T )(θkq(T )) and p(S)S(θkq(T )) = {0},

since the continuity of p(S)θ obviously forces p(S)θkq(T ) to be contin-
uous as well. Hence we may successively apply the proof of (case 1) of
this case to obtain polynomials p1, p2, . . . pn whose roots are all eigen-
values of S and θkp1(T ) · · · pk(T ) is continuous for k = 1, . . . , n. Let
r = p1 · · · pn. Then all roots of r are eigenvalues of S. Hence θr(T ) is
continuous. Since the pair (S, T ) has no critical eigenvalues, r(T )X has
finite codimension in X. By the open mapping theorem r(T )X is closed
in X and r(T ) is an open mapping from X onto r(T )X. Therefore, θ is
continuous.
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In any case, if we have a non trivial polynomial p such that p(S)S(θ) =
{0}, then the continuity of θ is ensured. Now, we will construct a non-
trivial polynomial p such that p(S)S(θ) = {0}. Since T has property (δ),

there is a Banach space X̂ and a continuous linear surjection q : X̂ → X

and a decomposable operator T̂ ∈ L(X̂) with Tq = qT̂ . Hence it is clear
that

(C(S, T )nθ)q = C(S, T̂ )n(θq).

Since θ : X → Y is a generalized intertwining linear operator for (S, T ),

θq : X̂ → Y is a generalized intertwining linear operator for (S, T̂ ).

Let θ̂ = θq. Then we observe that it suffices to consider the case that

C(S, T̂ )θ̂ is continuous: indeed, the general case can be easily deduced

by this special case and the argument of the proof of (case 2). Since T̂
has the single-valued property and S is isometry, from Proposition 2.4,
we infer that

θ̂(X̂
T̂
(F )) ⊆ YS(F )

for all closed subsets F of C. Since X̂
T̂
(F ) is the spectral capacity

and YS(F ) is stable, by Proposition 1.6, there is a finite set Λ of C
such that S(θ) ⊆ YS(Λ). An application of the Stability Lemma to the
sequence S − λ for λ ∈ Λ yields a polynomial p for which

((S − λ)p(S)S(θ̂))− = (p(S)S(θ̂))− for every λ ∈ Λ.

Applying Mittag-Leffler Theorem, there exists a dense subspace

W ⊆ (p(S)S(θ̂))−

for which (S − λ)W = W for every λ ∈ Λ. This means that

W ⊆ ES(C \ Λ)

by the definition of algebraic spectral subspaces. From the continuity of

C(S, T̂ )θ̂ we deduce that p(S)S(θ̂) ⊆ S(θ̂) Hence W ⊆ S(θ̂) ⊆ ES(Λ),
and we obtain that

W ⊆ ES(Λ) ∩ ES(C \ Λ) = ES(∅).

Since S is an isometry, S has no non-trivial divisible subspace, we have

W = {0}. Consequently, p(S)θ̂ = {0}. Hence p(S)θ̂ = p(S)θq is con-
tinuous. Since q is a continuous linear surjection, by the open mapping
theorem, p(S)θ is also continuous. Therefore, θ is continuous.
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