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THE DIMENSION OF THE SPACE OF STABLE MAPS

TO THE RELATIVE LAGRANGIAN GRASSMANNIAN

OVER A CURVE

Daewoong Cheong

Abstract. Let C be a smooth projective curve and W a sym-
plectic bundle over C of degree w. Let π : LG(W ) → C be the
relative Lagrangian Grassmannian over C and Sd(W ) be the space
of Lagrangian subbundles of degree w−d. Then Kontsevich’s space
Mg(LG(W ), βd) of stable maps to LG(W ) is a compactification of
Sd(W ). In this article, we give an upper bound on the dimension

of Mg(LG(W ), βd), which is an analogue of a result in [8] for the
relative Lagrangian Grassmannian.

1. Backgrounds

1.1. Relative Lagrangian Grassmannian

Let C be a smooth projective algebraic curve of genus g ≥ 0 over C.
For a line bundle L over C, an L-valued symplectic form is a nondegen-
erate skew-symmetric bilinear form ω : W ⊗ W → L. A vector bundle
W equipped with an L-valued symplectic form ω over C is called an L-
valued sympelctic bundle, or simply a symplectic bundle. A subbundle
E of W is called isotropic if ω|E⊗E = 0. By linear algebra, a symplectic
bundle has even rank 2n for some n and any isotropic subbundle has
rank at most n. An isotropic subbundle of rank n is called a Lagrangian
subbundle. Let w be the degree of W. Then we have w = nℓ, where ℓ
denotes the degree of L. For details on symplectic vector bundles, see
[1] and [2].
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For a symplecitc vector bundle W , let π : LG(W ) → C be the relative
Lagrangian Grassmannian of W . Lagrangian subbundles E of W are in
one to one correspondence with sections sE : C → LG(W ) and give rise
to quotient bundles FE := W/E of W , each of which fits into the short
exact sequence

(1.1) 0 → E → W → FE → 0.

1.2. Second (co)homology classes of LG(W )

Let TV be the vertical tangent bundle of LG(W ) relative to the map
π. For a section sE : C → LG(W ), the pull-back of TV along sE is the
bundle over C

s∗E (TV ) = L⊗ Sym2E∗.

Note that the determinant of the bundle
(
SymkE∗) is (detE∗)⊗t, where

t =
(
n+k−1

n

)
. Thus, if E has a degree e, then we have

deg (s∗E (TV )) = −(n+ 1)e+
n(n+ 1)

2
ℓ.

For convenience, we express deg (s∗E (TV )) in terms of the degree of the
quotient bundle FE . Let d be the degree of the quotient bundle FE in
(1.1), so that d = nℓ− e. Then we can write

deg (s∗E (TV )) = (n+ 1)d− n(n+ 1)

2
ℓ.

The second cohomology group H2(LG(W ),Q) is generated by the first
Chern class c1(TV ) and the class, say F, of a fibre of π. Thus any ho-
mology class β ∈ H2(LG(W )) is determined by the pairings with these
two cohomology classes ∫

β
F and

∫
β
c1(TV ).

Assume that β ∈ H2(LG(W );Q) is a class of a section, i.e., β = (sE)∗[C]
for some section sE . Then we have

(1.2)

∫
β
F = 1,

(1.3)

∫
β
c1(TV ) = deg(s∗ETV ) = (n+ 1)d− n(n+ 1)

2
ℓ.

We see that once β satisfies (1.2), a class of section β and the the degree
of a quotient bundle FE are interrelated with each other via (1.3), and
so one gives rise to the other.
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1.3. Compactification of the space of sections of π

For an integer d, let Sd(W ) be the space of Lagrangian subbundles E
ofW of degree nℓ−d or quotient bundles FE of degree d. It is known that
Sd(W ) is a quasi-projective variety. From the point of view of sections,
we can compactify Sd(W ). There are two popular compactifications of
Sd(W ). One is the Lagrangian Quot scheme of Lagrangian subsheaves
of W ([6] and [3]), and the other is Kontsevich’s space of stable maps
to LG(W ) ([4] and [5]). In general, in both cases, boundary points, i.e.,
newly added points are unwieldy. For instances, some components may
have larger dimension than expected, or may consist only of boundary
points. In this paper, we give an upper bound on the dimension of the
Kontsevich’s stable map compactification, following a result of Popa
and Roth for the relative (ordinary) Grassmannian [8]. For a topology
of Lagrangian Quot scheme, we refer the reader to [3].

1.4. Stable maps to LG(W )

Let X be a smooth projective variety. For β ∈ H2(X,Q) and a non-
negative integer m, the Kontsevich’s space Mg,m(X,β) consists of iso-
morphism classes of maps f : C ′ → X, subject to

1. C ′ is a curve of arithmetic genus g with m markings,
2. f∗[C

′] = β,
3. f satisfies the following stability condition:

(a) If a rational component of C ′ collapses to a point by f, then
it must contain at least three special points, i.e., markings or
(and) nodes.

(b) If a component of C ′ with the arithmetic genus one collapses
to a point, then it must contain at least one special point.

Here an isomorphism between two maps is obviously defined. We shall
write [f ] for the isomorphism class containing f : C ′ → X, and also refer
to f : C ′ → X as a reducible (resp. irreducible) map if the domain C ′

is reducible (resp. irreducible).

Let Mg,m(X,β) be the sublocus of Mg,m(X,β) consisting of isomor-

phism classes of irreducible maps f . Originally, Mg,m(X,β) have been
constructed as a compactification of Mg,m(X,β). When m = 0, we shall

write Mg(X,β) and Mg(X,β) for Mg,0(X,β) and Mg,0(X,β), respec-

tively. More details on Mg,m(X,β) can be found in [4] and [5].
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1.5. Description of elements of Mg(LG(W ), βd)

Now we describe elements of Mg(LG(W ), βd). The fact that βd is
a class of section and the genus condition impose a strong condition
on C ′ and f. By the equality (1.2) with β = [f∗C

′], f(C ′) intersects a
general fiber of π exactly at one point, and so there must be exactly
one special component C0 of C ′ which is isomorphically sent to C by
π ◦ f . This implies that the image curve f(C0) forms a section of π,
and hence the component C0 is a smooth projective curve of genus g.
Other components of C ′ can have genus zero by the genus condition, and
so form trees of rational curves, hanging off of C0. Write T1, . . . , Tk for

these trees, so that C ′ = C0∪
(⋃k

i=1 Ti

)
. By the condition (1.2), each Ti

is sent to LG(Wpi) for some pi ∈ C. Furthermore, in each tree Ti, there
is a rational curve with exactly one node, and hence, by the stability
condition, Ti cannot be completely collapsed to a point (in LG(Wpi)).
Thus f∗[Ti] ̸= 0 in H2(LG(W )). Write αi := f∗[Ti] for i = 1, . . . , k. Then
αi is characterized by ∫

αi

F and

∫
αi

c1(TV ).

Let us compute these parings. The first one has value 0 since Ti is sent
to the fiber LG(Wpi). For the second pairing, note that the restriction
of the vertical tangent bundle TV to LG(Wpi) is the tangent bundle
Ti := TLG(Wpi) of the Lagrangian Grassmannian LG(Wpi). Thus we
have ∫

αi

c1(TV ) =

∫
αi

c1(Ti).

On the other hand, since the determinant of the bundle Ti is ample and
f∗[Ti] is an effective class, the pairing

∫
αi

c1(Ti) is a positive number.

More precisely, applying (1.3) to the new trivial symplectic bundle W =
Wpi × C, we have ∫

αi

c1(TV ) =

∫
αi

c1(Ti) = (n+ 1)di

for some positive di < d. Recall from (1.3) that
∫
f∗[C′] c1(TV ) = (n +

1)d− n(n+1)
2 ℓ. Since f∗[C

′] = f∗[C0]+
∑k

i f∗[Ti], letting d0 := d−
∑k

i=1 di,
we have ∫

f∗[C0]
c1(TV ) = (n+ 1)d0 −

n(n+ 1)

2
ℓ.
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Thus f∗[C0] is the class of section βd0 . This implies that if [f ] is a point
of Mg(LG(W ), βd) with C ′ reducible, then the quotient bundle corre-
sponding to the section f(C0) of π has degree d0 with 0 < d0 < d.

Recall that the tangent bundle of the Lagrangian Grassmannian (in
fact, a homogeneous manifold) is generated by global sections( [7]). Thus,
as in the Grassmannian ([8]), nodes connecting two rational curves can
be smoothed. This implies that the general point of any component
of Mg(LG(W ), βd) corresponds to a map with a domain C ′ = C0 ∪(⋃k

i=1Ci

)
for some k ≥ 0, where C0 is a special component of Cprime

and each Ci a rational curve hanging off of C0 such that f∗[Ci] ̸= 0 in
H2(LG(W )). Other points in the component correspond to maps with

a domain C ′ = C0 ∪
(⋃k

i=1 Ti

)
, where Ti is a degeneration of Ci.

As explained above, all points in Mg(LG(W ), βd) correspond to a
map f with C ′ = C0. Since C0 is isomorphic to C, we can identify

Sd(W ) = Mg(LG(W ), βd).

Thus, the space Mg(LG(W ), ββ) is treated as a compactification of
Sd(W ).

2. Main theorem and its proof

Let

dn := min {deg F |F = W/E for a Lagrangian bundle E}.

We obtain an upper bound on the dimesion of Mg(LG(W ), βd), as an
analogue of Theorem 3.1 in [8].

Theorem 2.1. For an integer d ≥ dn, we have

(2.1) dim Mg(LG(W ), βd) ≤
n(n+ 1)

2
+ (d− dn)(n+ 1).

To prove Theorem 2.1, we need the following lemma whose proof can
be copied from that of Lemma 3.1 in [8].

Lemma 2.2. If M is an irreducible component of Mg(LG(W ), βd)
whose generic point corresponds to an irreducible map, then one of the
following is true.

• dimM ≤ n(n+1)
2 ,

• there is a (nonempty) divisor D ⊂ M which consists of maps with
a reducible domain.
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Proof of Theorem 2.1. The proof is an adaptation of Theorem 3.1 of
[8]. We use induction on d. First, as a base case of the induction, we
consider the case d = dn. For this case, we claim that each irreducible
component M of Mg(LG(W ), βdn) consists only of (isomorphism classes
of) irreducible maps. Indeed, if there is an irreducible component M
that contains a reducible map f , then f gives rise to a section f(C0)
of π. By the description in Subsection 1.5, the degree d0 corresponding
to the section f(C0) is strictly less than dn But this is impossible by
minimality of dn. Thus each component of Mg(LG(W ), βdn) consists
only of irreducible maps.

Now let d be an integer with d > dn. Assume that the theorem
holds for all d′ with d′ < d. Let M be any irreducible component of
Mg(LG(W ), βd). It is enough to show

dimM ≤ n(n+ 1)

2
+ (d− dn)(n+ 1).

We treat two cases separately.
Case 1: Generic point of M corresponds to an irreducible map.

In this case, if dimM ≤ n(n+1)
2 , then there is nothing to prove. Thus

we assume dimM > n(n+1)
2 . Then by Lemma 2.2, there is a (nonempty)

divisor Z ⊂ M which consists of irreducible maps. Let Z ′ be an irre-
ducible component of Z (so that dimZ ′ = dimZ = dimM − 1). Then if

[f ] is a point of Z ′, then f has a domain C ′ = C0 ∪
(⋃k

i=1 Ti

)
for trees

Ti of rational curves for i = 1, . . . , k. Note that the number k and all the
homology classes αi = f∗[Ti] for i = 1, . . . , k do not depend on points [f ]
in Z ′. Recall that

∫
αi

c1(TV ) = (n+1)di for some integer 0 < di < d. For
induction, we consider two spaces with evaluation maps ev at markings.

ev : Mg,1(LG(W ), βd−dk) → LG(W )

and

ev : M0,1(LG(W ), αk) → LG(W ).

We have a natural morphism Φ from the fibre product of these spaces
taken along the evaluations ev

Φ : Mg,1(LG(W ), βd−dk)×LG(W ) M0,1(LG(W ), αk) → Mg(LG(W ), βd)

Note that Φ functions to gluing together two maps whose markings are
sent to the same point of LG(W ). We can easily see that Z ′ is in the
image of Φ and hence the dimension of Z ′ is bounded above by the
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dimension of the fibre product. Recall from [5] that we have

dim M0,1(LG(W ), αk) = (n+ 1)dk +
n(n+ 1)

2
− 1

and

dim Mg,1(LG(W ), βd−dk) = dim Mg(LG(W ), βd−dk) + 1.

Then, the dimension of the fibre product is(
dim Mg(LG(W ), βd−dk) + 1

)
+

(
(n+ 1)dk +

n(n+ 1)

2
− 1

)
−
(
n(n+ 1)

2
+ 1

)
.

Thus we have

(2.2) dimZ ′ ≤ dim Mg(LG(W ), βd−dk) + (n+ 1)dk − 1.

By induction hypothesis, we obtain

dimZ ′ ≤ n(n+ 1)

2
+ (d− dn)(n+ 1)− 1,

and hence

dim M = dimZ ′ + 1 ≤ n(n+ 1)

2
+ (d− dn)(n+ 1).

Case 2:A generic point ofM corresponds to a reducible map. Assume
that the general point of M corresponds to a map f with reducible

domain C ′ such that C ′ = C0∪
(⋃k

i=1Ci

)
. Writing αi := f∗[Ci], we may

think of M as Z ′ (for Z ′ in Case 1). Thus, by (2.2) of Case 1, we have

dimM ≤ dim Mg(LG(W ), βd−dk) + (n+ 1)dk − 1.

Repeating the same argument as in Case 1 for each of the other (k− 1)
trees Tk−1, . . . , T1, we obtain

dim M ≤ n(n+ 1)

2
+ (d− dn)(n+ 1)− k.

This completes the proof of theorem.
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