DOI QR코드

DOI QR Code

Multidisciplinary approach to sarcopenia: a narrative review

  • Wook Tae Park (Department of Orthopedic Surgery, Yeungnam University College of Medicine) ;
  • Oog-Jin Shon (Department of Orthopedic Surgery, Yeungnam University College of Medicine) ;
  • Gi Beom Kim (Department of Orthopedic Surgery, Yeungnam University College of Medicine)
  • 투고 : 2023.07.01
  • 심사 : 2023.08.10
  • 발행 : 2023.10.31

초록

Sarcopenia is a condition in which muscle mass and strength are decreased and muscle function is impaired. It is an indicator of frailty and loss of independence in older adults. It is also associated with increased physical disability, which increases the risk of falls. As a multifactorial disease, sarcopenia is caused by a combination of factors including aging, hormonal changes, nutritional deficiencies, and physical inactivity. Understanding the underlying pathophysiology of sarcopenia and identifying its different causes is critical to developing effective prevention and treatment strategies. This review summarizes the pathophysiology, consequences, diagnostic methods, and multidisciplinary approaches to sarcopenia.

키워드

과제정보

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A1A03040177).

참고문헌

  1. Evans WJ. Sarcopenia should reflect the contribution of age-associated changes in skeletal muscle to risk of morbidity and mortality in elderly people. J Am Med Dir Assoc 2015;16:546-7.  https://doi.org/10.1016/j.jamda.2015.03.021
  2. Volpi E, Nazemi R, Fujita S. Muscle tissue changes with aging. Curr Opin Clin Nutr Metab Care 2004;7:405-10.  https://doi.org/10.1097/01.mco.0000134362.76653.b2
  3. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019;48:16-31.  https://doi.org/10.1093/ageing/afy169
  4. Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr 1997;127:990S-1S. 
  5. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 1998;147:755-63.  https://doi.org/10.1093/oxfordjournals.aje.a009520
  6. Shon OJ, Kim GB, Cho SJ. Does sarcopenia accompanying end-stage knee osteoarthritis affect the outcomes following total knee arthroplasty? Medicina (Kaunas) 2023;59:1078. 
  7. Shafiee G, Keshtkar A, Soltani A, Ahadi Z, Larijani B, Heshmat R. Prevalence of sarcopenia in the world: a systematic review and meta-analysis of general population studies. J Diabetes Metab Disord 2017;16:21. 
  8. Bruyere O, Beaudart C, Ethgen O, Reginster JY, Locquet M. The health economics burden of sarcopenia: a systematic review. Maturitas 2019;119:61-9.  https://doi.org/10.1016/j.maturitas.2018.11.003
  9. Beaudart C, Rizzoli R, Bruyere O, Reginster JY, Biver E. Sarcopenia: burden and challenges for public health. Arch Public Health 2014;72:45. 
  10. Abate M, Di Iorio A, Di Renzo D, Paganelli R, Saggini R, Abate G. Frailty in the elderly: the physical dimension. Eura Medicophys 2007;43:407-15. 
  11. Faulkner JA, Larkin LM, Claflin DR, Brooks SV. Age-related changes in the structure and function of skeletal muscles. Clin Exp Pharmacol Physiol 2007;34:1091-6.  https://doi.org/10.1111/j.1440-1681.2007.04752.x
  12. Ryall JG, Schertzer JD, Lynch GS. Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology 2008;9:213-28.  https://doi.org/10.1007/s10522-008-9131-0
  13. Melton LJ, Khosla S, Crowson CS, O'Connor MK, O'Fallon WM, Riggs BL. Epidemiology of sarcopenia. J Am Geriatr Soc 2000;48:625-30.  https://doi.org/10.1111/j.1532-5415.2000.tb04719.x
  14. Cermak NM, Snijders T, McKay BR, Parise G, Verdijk LB, Tarnopolsky MA, et al. Eccentric exercise increases satellite cell content in type II muscle fibers. Med Sci Sports Exerc 2013;45:230-7.  https://doi.org/10.1249/MSS.0b013e318272cf47
  15. Nguyen MK, Kurtz I. Quantitative interrelationship between Gibbs-Donnan equilibrium, osmolality of body fluid compartments, and plasma water sodium concentration. J Appl Physiol (1985) 2006;100:1293-300.  https://doi.org/10.1152/japplphysiol.01274.2005
  16. Narici MV, Maffulli N. Sarcopenia: characteristics, mechanisms and functional significance. Br Med Bull 2010;95:139-59.  https://doi.org/10.1093/bmb/ldq008
  17. Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, et al. Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev 2019;99:427-511.  https://doi.org/10.1152/physrev.00061.2017
  18. Power GA, Dalton BH, Rice CL. Human neuromuscular structure and function in old age: a brief review. J Sport Health Sci 2013;2:215-26.  https://doi.org/10.1016/j.jshs.2013.07.001
  19. Coppi E, Houdayer E, Chieffo R, Spagnolo F, Inuggi A, Straffi L, et al. Age-related changes in motor cortical representation and interhemispheric interactions: a transcranial magnetic stimulation study. Front Aging Neurosci 2014;6:209. 
  20. Clanton TL. Hypoxia-induced reactive oxygen species formation in skeletal muscle. J Appl Physiol (1985) 2007;102:2379-88.  https://doi.org/10.1152/japplphysiol.01298.2006
  21. Snijders T, Nederveen JP, McKay BR, Joanisse S, Verdijk LB, van Loon LJ, et al. Satellite cells in human skeletal muscle plasticity. Front Physiol 2015;6:283. 
  22. Basualto-Alarcon C, Varela D, Duran J, Maass R, Estrada M. Sarcopenia and androgens: a link between pathology and treatment. Front Endocrinol (Lausanne) 2014;5:217. 
  23. McDonald VM, Simpson JL, Higgins I, Gibson PG. Multidimensional assessment of older people with asthma and COPD: clinical management and health status. Age Ageing 2011;40:42-9.  https://doi.org/10.1093/ageing/afq134
  24. Ferrando AA, Sheffield-Moore M, Paddon-Jones D, Wolfe RR, Urban RJ. Differential anabolic effects of testosterone and amino acid feeding in older men. J Clin Endocrinol Metab 2003;88:358-62.  https://doi.org/10.1210/jc.2002-021041
  25. Messier V, Rabasa-Lhoret R, Barbat-Artigas S, Elisha B, Karelis AD, Aubertin-Leheudre M. Menopause and sarcopenia: a potential role for sex hormones. Maturitas 2011;68:331-6.  https://doi.org/10.1016/j.maturitas.2011.01.014
  26. Santini MP, Tsao L, Monassier L, Theodoropoulos C, Carter J, Lara-Pezzi E, et al. Enhancing repair of the mammalian heart. Circ Res 2007;100:1732-40.  https://doi.org/10.1161/CIRCRESAHA.107.148791
  27. Fitts RH, Romatowski JG, Peters JR, Paddon-Jones D, Wolfe RR, Ferrando AA. The deleterious effects of bed rest on human skeletal muscle fibers are exacerbated by hypercortisolemia and ameliorated by dietary supplementation. Am J Physiol Cell Physiol 2007;293:C313-20.  https://doi.org/10.1152/ajpcell.00573.2006
  28. Paddon-Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care 2009;12:86-90.  https://doi.org/10.1097/MCO.0b013e32831cef8b
  29. Leong DP, Teo KK, Rangarajan S, Lopez-Jaramillo P, Avezum A, Orlandini A, et al. Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 2015;386:266-73.  https://doi.org/10.1016/S0140-6736(14)62000-6
  30. Morley JE, Anker SD, von Haehling S. Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology-update 2014. J Cachexia Sarcopenia Muscle 2014;5:253-9.  https://doi.org/10.1007/s13539-014-0161-y
  31. Cruz-Jentoft AJ, Landi F, Schneider SM, Zuniga C, Arai H, Boirie Y, et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 2014;43:748-59.
  32. Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet 2019;393:2636-46.  https://doi.org/10.1016/S0140-6736(19)31138-9
  33. Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 2014;15:95-101.  https://doi.org/10.1016/j.jamda.2013.11.025
  34. Szulc P, Beck TJ, Marchand F, Delmas PD. Low skeletal muscle mass is associated with poor structural parameters of bone and impaired balance in elderly men: the MINOS study. J Bone Miner Res 2005;20:721-9. 
  35. Edwards MH, Gregson CL, Patel HP, Jameson KA, Harvey NC, Sayer AA, et al. Muscle size, strength, and physical performance and their associations with bone structure in the Hertfordshire Cohort Study. J Bone Miner Res 2013;28:2295-304.  https://doi.org/10.1002/jbmr.1972
  36. Sjoblom S, Suuronen J, Rikkonen T, Honkanen R, Kroger H, Sirola J. Relationship between postmenopausal osteoporosis and the components of clinical sarcopenia. Maturitas 2013;75:175-80.  https://doi.org/10.1016/j.maturitas.2013.03.016
  37. Kinoshita K, Satake S, Matsui Y, Arai H. Association between sarcopenia and fall risk according to the muscle mass adjustment method in Japanese older outpatients. J Nutr Health Aging 2021;25:762-6.  https://doi.org/10.1007/s12603-021-1620-8
  38. Moreland JD, Richardson JA, Goldsmith CH, Clase CM. Muscle weakness and falls in older adults: a systematic review and meta-analysis. J Am Geriatr Soc 2004;52:1121-9.  https://doi.org/10.1111/j.1532-5415.2004.52310.x
  39. Alvarez-Barbosa F, del Pozo-Cruz J, del Pozo-Cruz B, Alfonso-Rosa RM, Rogers ME, Zhang Y. Effects of supervised whole body vibration exercise on fall risk factors, functional dependence and health-related quality of life in nursing home residents aged 80+. Maturitas 2014;79:456-63.  https://doi.org/10.1016/j.maturitas.2014.09.010
  40. Morley JE, Vellas B, van Kan GA, Anker SD, Bauer JM, Bernabei R, et al. Frailty consensus: a call to action. J Am Med Dir Assoc 2013;14:392-7. 
  41. Rubenstein LZ. Falls in older people: epidemiology, risk factors and strategies for prevention. Age Ageing 2006;35:ii37-41.  https://doi.org/10.1093/ageing/afl084
  42. Beaudart C, Biver E, Bruyere O, Cooper C, Al-Daghri N, Reginster JY, et al. Quality of life assessment in musculo-skeletal health. Aging Clin Exp Res 2018;30:413-8.  https://doi.org/10.1007/s40520-017-0794-8
  43. Ethgen O, Beaudart C, Buckinx F, Bruyere O, Reginster JY. The future prevalence of sarcopenia in Europe: a claim for public health action. Calcif Tissue Int 2017;100:229-34.  https://doi.org/10.1007/s00223-016-0220-9
  44. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 2004;52:80-5.  https://doi.org/10.1111/j.1532-5415.2004.52014.x
  45. Chang KV, Chen JD, Wu WT, Huang KC, Hsu CT, Han DS. Association between loss of skeletal muscle mass and mortality and tumor recurrence in hepatocellular carcinoma: a systematic review and meta-analysis. Liver Cancer 2018;7:90-103.  https://doi.org/10.1159/000484950
  46. Chang KV, Chen JD, Wu WT, Huang KC, Lin HY, Han DS. Is sarcopenia associated with hepatic encephalopathy in liver cirrhosis? A systematic review and meta-analysis. J Formos Med Assoc 2019;118:833-42.  https://doi.org/10.1016/j.jfma.2018.09.011
  47. Chen KC, Jeng Y, Wu WT, Wang TG, Han DS, Ozcakar L, et al. Sarcopenic dysphagia: a narrative review from diagnosis to intervention. Nutrients 2021;13:4043. 
  48. Nishioka S, Okamoto T, Takayama M, Urushihara M, Watanabe M, Kiriya Y, et al. Malnutrition risk predicts recovery of full oral intake among older adult stroke patients undergoing enteral nutrition: secondary analysis of a multicentre survey (the APPLE study). Clin Nutr 2017;36:1089-96.  https://doi.org/10.1016/j.clnu.2016.06.028
  49. Setiati S. Diagnostic tools for sarcopenia: can we get less expensive and accurate methods? Acta Med Indones 2019;51:93-4. 
  50. Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 2014;69:547-58.  https://doi.org/10.1093/gerona/glu010
  51. Gould H, Brennan SL, Kotowicz MA, Nicholson GC, Pasco JA. Total and appendicular lean mass reference ranges for Australian men and women: the Geelong osteoporosis study. Calcif Tissue Int 2014;94:363-72. 
  52. Lukaski HC. Evolution of bioimpedance: a circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research. Eur J Clin Nutr 2013;67(Suppl 1):S2-9.  https://doi.org/10.1038/ejcn.2012.149
  53. Sergi G, De Rui M, Veronese N, Bolzetta F, Berton L, Carraro S, et al. Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free-living Caucasian older adults. Clin Nutr 2015;34:667-73.  https://doi.org/10.1016/j.clnu.2014.07.010
  54. Yu SC, Powell A, Khow KS, Visvanathan R. The performance of five bioelectrical impedance analysis prediction equations against dual X-ray absorptiometry in estimating appendicular skeletal muscle mass in an adult Australian population. Nutrients 2016;8:189. 
  55. Baek JY, Jung HW, Kim KM, Kim M, Park CY, Lee KP, et al. Korean Working Group on Sarcopenia guideline: expert consensus on sarcopenia screening and diagnosis by the Korean Society of Sarcopenia, the Korean Society for Bone andMineral Research, and the Korean Geriatrics Society. Ann Geriatr Med Res 2023;27:9-21.  https://doi.org/10.4235/agmr.23.0009
  56. Mathiowetz V, Kashman N, Volland G, Weber K, Dowe M, Rogers S. Grip and pinch strength: normative data for adults. Arch Phys Med Rehabil 1985;66:69-74. 
  57. Desrosiers J, Hebert R, Bravo G, Dutil E. Comparison of the Jamar dynamometer and the Martin vigorimeter for grip strength measurements in a healthy elderly population. Scand J Rehabil Med 1995;27:137-43.
  58. Dodds RM, Syddall HE, Cooper R, Benzeval M, Deary IJ, Dennison EM, et al. Grip strength across the life course: normative data from twelve British studies. PLoS One 2014;9:e113637. 
  59. Maggio M, Ceda GP, Ticinesi A, De Vita F, Gelmini G, Costantino C, et al. Instrumental and non-instrumental evaluation of 4-meter walking speed in older individuals. PLoS One 2016;11:e0153583. 
  60. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol 1994;49(Suppl 2):M85-94.  https://doi.org/10.1093/geronj/49.2.M85
  61. Pavasini R, Guralnik J, Brown JC, di Bari M, Cesari M, Landi F, et al. Short Physical Performance Battery and all-cause mortality: systematic review and meta-analysis. BMC Med 2016;14:215. 
  62. Gill TM. Assessment of function and disability in longitudinal studies. J Am Geriatr Soc 2010;58(Suppl 2):S308-12. 
  63. Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991;39:142-8.  https://doi.org/10.1111/j.1532-5415.1991.tb01616.x
  64. Barry E, Galvin R, Keogh C, Horgan F, Fahey T. Is the Timed Up and Go test a useful predictor of risk of falls in community dwelling older adults: a systematic review and meta-analysis. BMC Geriatr 2014;14:14. 
  65. Jones CJ, Rikli RE, Beam WC. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport 1999;70:113-9.  https://doi.org/10.1080/02701367.1999.10608028
  66. Bohannon RW. Sit-to-stand test for measuring performance of lower extremity muscles. Percept Mot Skills 1995;80:163-6.  https://doi.org/10.2466/pms.1995.80.1.163
  67. Fragala MS, Cadore EL, Dorgo S, Izquierdo M, Kraemer WJ, Peterson MD, et al. Resistance training for older adults: position statement from the National Strength and Conditioning Association. J Strength Cond Res 2019;33:2019-52.  https://doi.org/10.1519/JSC.0000000000003230
  68. Kraemer WJ, Adams K, Cafarelli E, Dudley GA, Dooly C, Feigenbaum MS, et al. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 2002;34:364-80.  https://doi.org/10.1097/00005768-200202000-00027
  69. Loprinzi PD, Lee H, Cardinal BJ. Evidence to support including lifestyle light-intensity recommendations in physical activity guidelines for older adults. Am J Health Promot 2015;29:277-84.  https://doi.org/10.4278/ajhp.130709-QUAN-354
  70. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, et al. The physical activity guidelines for Americans. JAMA 2018;320:2020-8.  https://doi.org/10.1001/jama.2018.14854
  71. Granacher U, Gollhofer A, Hortobagyi T, Kressig RW, Muehlbauer T. The importance of trunk muscle strength for balance, functional performance, and fall prevention in seniors: a systematic review. Sports Med 2013;43:627-41.  https://doi.org/10.1007/s40279-013-0041-1
  72. Page P. Current concepts in muscle stretching for exercise and rehabilitation. Int J Sports Phys Ther 2012;7:109-19. 
  73. Chang KV, Wu WT, Huang KC, Han DS. Effectiveness of early versus delayed exercise and nutritional intervention on segmental body composition of sarcopenic elders: a randomized controlled trial. Clin Nutr 2021;40:1052-9.  https://doi.org/10.1016/j.clnu.2020.06.037
  74. Bauer J, Biolo G, Cederholm T, Cesari M, Cruz-Jentoft AJ, Morley JE, et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc 2013;14:542-59.  https://doi.org/10.1016/j.jamda.2013.05.021
  75. Houston DK, Nicklas BJ, Ding J, Harris TB, Tylavsky FA, Newman AB, et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr 2008;87:150-5. 
  76. Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr 2006;84:475-82.  https://doi.org/10.1093/ajcn/84.3.475
  77. Rennie MJ, Tipton KD. Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annu Rev Nutr 2000;20:457-83. 
  78. Norton LE, Layman DK. Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J Nutr 2006;136:533S-7S. 
  79. Guillet C, Prod'homme M, Balage M, Gachon P, Giraudet C, Morin L, et al. Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans. FASEB J 2004;18:1586-7.  https://doi.org/10.1096/fj.03-1341fje
  80. Rieu I, Balage M, Sornet C, Debras E, Ripes S, Rochon-Bonhomme C, et al. Increased availability of leucine with leucine-rich whey proteins improves postprandial muscle protein synthesis in aging rats. Nutrition 2007;23:323-31.  https://doi.org/10.1016/j.nut.2006.12.013
  81. Rieu I, Balage M, Sornet C, Giraudet C, Pujos E, Grizard J, et al. Leucine supplementation improves muscle protein synthesis in elderly men independently of hyperaminoacidaemia. J Physiol 2006;575:305-15. 
  82. Beaudart C, Buckinx F, Rabenda V, Gillain S, Cavalier E, Slomian J, et al. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab 2014;99:4336-45.  https://doi.org/10.1210/jc.2014-1742
  83. Deutz NE, Bauer JM, Barazzoni R, Biolo G, Boirie Y, Bosy-Westphal A, et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr 2014;33:929-36.  https://doi.org/10.1016/j.clnu.2014.04.007
  84. Phillips SM. Nutritional supplements in support of resistance exercise to counter age-related sarcopenia. Adv Nutr 2015;6:452-60.  https://doi.org/10.3945/an.115.008367
  85. Srinivas-Shankar U, Roberts SA, Connolly MJ, O'Connell MD, Adams JE, Oldham JA, et al. Effects of testosterone on muscle strength, physical function, body composition, and quality of life in intermediate-frail and frail elderly men: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 2010;95:639-50.  https://doi.org/10.1210/jc.2009-1251
  86. Davis SR, Wahlin-Jacobsen S. Testosterone in women: the clinical significance. Lancet Diabetes Endocrinol 2015;3:980-92.  https://doi.org/10.1016/S2213-8587(15)00284-3
  87. Morley JE. Pharmacologic options for the treatment of sarcopenia. Calcif Tissue Int 2016;98:319-33.  https://doi.org/10.1007/s00223-015-0022-5
  88. Latres E, Amini AR, Amini AA, Griffiths J, Martin FJ, Wei Y, et al. Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem 2005;280:2737-44.  https://doi.org/10.1074/jbc.M407517200
  89. Dalton JT, Barnette KG, Bohl CE, Hancock ML, Rodriguez D, Dodson ST, et al. The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. J Cachexia Sarcopenia Muscle 2011;2:153-61.  https://doi.org/10.1007/s13539-011-0034-6
  90. Furutani M, Suganuma M, Akiyama S, Mitsumori R, Takemura M, Matsui Y, et al. RNA-sequencing analysis identification of potential biomarkers for diagnosis of sarcopenia. J Gerontol A Biol Sci Med Sci 2023 Jun 22 [Epub]. https://doi.org/10.1093/gerona/glad150. 
  91. Salamanna F, Contartese D, Ruffilli A, Barile F, Bellavia D, Marchese L, et al. Sharing circulating micro-RNAs between osteoporosis and sarcopenia: a systematic review. Life (Basel) 2023;13:602. 
  92. Wang LX, Zhang X, Guan LJ, Pen Y. What role do extracellular vesicles play in developing physical frailty and sarcopenia?: a systematic review. Z Gerontol Geriatr 2022 Dec 2 [Epub]. https://doi.org/10.1007/s00391-022-02150-3. 
  93. Buccheri E, Dell'Aquila D, Russo M, Chiaramonte R, Musumeci G, Vecchio M. Can artificial intelligence simplify the screening of muscle mass loss? Heliyon 2023;9:e16323. 
  94. Zupo R, Moroni A, Castellana F, Gasparri C, Catino F, Lampignano L, et al. A machine-learning approach to target clinical and biological features associated with sarcopenia: findings from northern and southern Italian aging populations. Metabolites 2023;13:565. 
  95. Dao T, Green AE, Kim YA, Bae SJ, Ha KT, Gariani K, et al. Sarcopenia and muscle aging: a brief overview. Endocrinol Metab (Seoul) 2020;35:716-32.  https://doi.org/10.3803/EnM.2020.405
  96. Jang JY, Kim D, Kim ND. Pathogenesis, intervention, and current status of drug development for sarcopenia: a review. Biomedicines 2023;11:1635. 
  97. Christiansen AR, Lipshultz LI, Hotaling JM, Pastuszak AW. Selective androgen receptor modulators: the future of androgen therapy? Transl Androl Urol 2020;9(Suppl 2):S135-48. https://doi.org/10.21037/tau.2019.11.02