참고문헌
- Kueh, A.B., Tan, C.Y., Yahya, M.Y. and Wahit, M.U. (2022), "Impact resistance efficiency of bio-inspired sandwich beam with different arched core materials", Steel Compos. Struct., 44(1), 100-105. https://doi.org/https://doi.org/10.12989/scs.2022.44.1.105.
- Albooyeh, A., Soleymani, P. and Taghipoor, H. (2022), "Evaluation of the mechanical properties of hydroxyapatite-silica aerogel/epoxy nanocomposites: Optimizing by response surface approach", J. Mech. Behav. Biomed. Mater., 136, 105513. https://doi.org/10.1016/j.jmbbm.2022.105513.
- ASTM Int. (2009), Standard Test Methods for Tension Testing of Metallic Materials 1. Astm, C, 1-27. https://doi.org/10.1520/E0008.
- Borges, H., Martinez, G. and Graciano, C. (2016), "Impact response of expanded metal tubes: A numerical investigation", Thin Wall. Struct., 105, 71-80. https://doi.org/10.1016/j.tws.2016.04.005.
- Chen, V.C.P., Tsui, K.L., Barton, R.R. and Meckesheimer, M. (2006), "A review on design, modeling and applications of computer experiments", IIE Transactions, 38(4), 273-291. https://doi.org/10.1080/07408170500232495.
- Deshpande, V. and Fleck, N. (2001), "Collapse of truss core sandwich beams in 3-point bending", Int. J. Solid. Struct., 38(36-37), 6275-6305. https://doi.org/10.1016/S0020-7683(01)00103-2.
- Dragoni, E. (2013), "Optimal mechanical design of tetrahedral truss cores for sandwich constructions. J. Sandw. Struct. Mater., 15(4), 464-484. https://doi.org/10.1177/1099636213487364.
- Eyvazian, A., Eltai, E., Musharavati, F., Taghipoor, H., Sebaey, T. A. and Talebizadehsardari, P. (2020), "Experimental and numerical investigations on axial crushing of square cross - sections tube with vertical wave", Steel Compos. Struct., 36(2), 119-141. https://doi.org/10.12989. https://doi.org/10.12989
- Eyvazian, A., Taghipoor, H. and Tran, T. (2022), "Analytical and experimental investigations on axial crushing of aluminum tube with vertically corrugated", Int. J. Crashworthiness, 27(4), 1032-1045. https://doi.org/10.1080/13588265.2021.1892954.
- Frostig, Y., Baruch, M., Vilnay, O. and Sheinman, I. (1992), "High-Order Theory for Sandwich-Beam Behavior with Transversely Flexible Core", J. Eng. Mech., 118(5), 1026-1043. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:5(1026).
- Guruprasad, S. and Mukherjee, A. (2000a), "Layered sacrificial claddings under blast loading Part I - analytical studies", Int. J. Impact Eng., 24(9), 957-973. https://doi.org/10.1016/S0734-743X(00)00004-X.
- Guruprasad, S. and Mukherjee, A. (2000b), "Layered sacrificial claddings under blast loading Part II - Experimental studies", Int. J. Impact Eng., 24(9), 975-984. https://doi.org/10.1016/S0734-743X(00)00005-1.
- Ha, N. S., Lu, G. and Xiang, X. (2019), "Energy absorption of a bio-inspired honeycomb sandwich panel", J. Mater. Sci., 54(8), 6286-6300. https://doi.org/10.1007/s10853-018-3163-x.
- Hanifehzadeh, M. and Mousavi, M.M.R. (2019), "Predicting the structural performance of sandwich concrete panels subjected to blast load considering dynamic increase factor", J. Civil Eng., Sci. Tech., 10(1), 45-58. https://doi.org/10.33736/jcest.1067.2019.
- Design-Expert® version 10 (2017), https://www.statease.com.
- Hundley, J.M., Clough, E.C. and Jacobsen, A.J. (2015), "The low velocity impact response of sandwich panels with lattice core reinforcement", Int. J. Impact Eng., 84, 64-77. https://doi.org/10.1016/j.ijimpeng.2015.05.009.
- Kooistra, G.W. and Wadley, H.N.G. (2007), "Lattice truss structures from expanded metal sheet", Materials and Design, 28(2), 507-514. https://doi.org/10.1016/j.matdes.2005.08.013.
- Kueh, A.B.H. and Siaw, Y.Y. (2021), "Impact resistance of bio-inspired sandwich beam with side-arched and honeycomb dual-core", Compos. Struct., 275, 114439. https://doi.org/10.1016/j.compstruct.2021.114439.
- Le, V.T., Ha, N.S. and Goo, N.S. (2021), "Advanced sandwich structures for thermal protection systems in hypersonic vehicles: A review", Compos. Part B: Eng., 226, 109301. https://doi.org/10.1016/j.compositesb.2021.109301.
- Mines, R.A.W., Tsopanos, S., Shen, Y., Hasan, R. and McKown, S.T. (2013), "Drop weight impact behaviour of sandwich panels with metallic micro lattice cores", Int. J. Impact Eng., 60, 120-132. https://doi.org/10.1016/j.ijimpeng.2013.04.007.
- Myers, R.H., Douglas C. Montgomery and Anderson-Cook, C.M. (2016), "Response Surface Methodology: Process and Product Optimization Using Designed Experiments", John Wiley and Sons, 4th Editio.
- Niyaraki, M.N., Mirzaei, J. and Taghipoor, H. (2022), "Evaluation of the effect of nanomaterials and fibers on the mechanical behavior of polymer-based nanocomposites using Box-Behnken response surface methodology", Polymer Bulletin. https://doi.org/10.1007/s00289-022-04517-3.
- Olabi, A.G., Morris, E., Hashmi, M.S.J. and Gilchrist, M.D. (2008), "Optimised design of nested circular tube energy absorbers under lateral impact loading", Int. J. Mech. Sci., 50(1), 104-116. https://doi.org/10.1016/j.ijmecsci.2007.04.005.
- Palomba, G., Epasto, G., Crupi, V. and Guglielmino, E. (2018), "Single and double-layer honeycomb sandwich panels under impact loading", Int. J. Impact Eng., 121, 77-90. https://doi.org/10.1016/j.ijimpeng.2018.07.013.
- Shen, Y., Cantwell, W., Mines, R. and Li, Y. (2014), "Low-velocity impact performance of lattice structure core based sandwich panels", J. Compos. Mater., 48(25), 3153-3167. https://doi.org/10.1177/0021998313507616.
- Simone, A.E. and Gibson, L.J. (1998), "Aluminum foams produced by liquid-state processes", Acta Materialia, 46(9), 3109-3123. https://doi.org/10.1016/S1359-6454(98)00017-2.
- Taghipoor, H. and Damghani Nouri, M. (2019), "Experimental and numerical investigation of lattice core sandwich beams under low-velocity bending impact. J. Sandw. Struct. Mater., 21(6), 2154-2177. https://doi.org/10.1177/1099636218761315.
- Taghipoor, H. and Damghani Nouri, M. (2020), "Axial crushing and transverse bending responses of sandwich structures with lattice core", J. Sandw. Struct. Mater., 22(3), 572-598. https://doi.org/10.1177/1099636218761321.
- Taghipoor, H. and Eyvazian, A. (2022), "Quasi-static axial crush response and energy absorption of composite wrapped metallic thin-walled tube", J. Braz. Soc. Mech. Sci. Eng., 44(4), 158. https://doi.org/10.1007/s40430-022-03449-3.
- Taghipoor, H., Eyvazian, A., Ghiaskar, A., Praveen Kumar, A., Magid Hamouda, A. and Gobbi, M. (2020a), "Experimental and numerical study of lattice-core sandwich panels under low-speed impact", Materials Today: Proceedings, 27(xxxx), 1487-1492. https://doi.org/10.1016/j.matpr.2020.03.001.
- Taghipoor, H., Eyvazian, A., Ghiaskar, A., Praveen Kumar, A., Magid Hamouda, A. and Gobbi, M. (2020b), "Experimental investigation of the thin-walled energy absorbers with different sections including surface imperfections under low-speed impact test", Materials Today: Proceedings, 27(xxxx), 1498-1504. https://doi.org/10.1016/j.matpr.2020.03.006.
- Taghipoor, H., Eyvazian, A., Musharavati, F., Sebaey, T. A. and Ghiaskar, A. (2020), "Experimental investigation of the three-point bending properties of sandwich beams with polyurethane foam-filled lattice cores", Struct., 28, 424-432. https://doi.org/10.1016/j.istruc.2020.08.082.
- Taghipoor, H., Fereidoon, A., Ghasemi-Ghalebahman, A. and Mirzaei, J. (2022), "Experimental assessment of mechanical behavior of basalt/graphene/PP-g-MA-reinforced polymer nanocomposites by response surface methodology", Polymer Bulletin, 0123456789. https://doi.org/10.1007/s00289-022-04420-x.
- Taghipoor, H., Ghiaskar, A. and Shavalipour, A. (2021), "Crashworthiness performance of thin-walled, square tubes with circular hole discontinuities under high-speed impact loading", Int. J. Crashworthiness, 1-13. https://doi.org/10.1080/13588265.2021.1981125.
- Taghipoor, H. and Mirzaei, J. (2023), "Statistical predicting and optimization of the tensile properties of natural fiber bio-composites", Polymer Bulletin. https://doi.org/10.1007/s00289-023-04713-9.
- Taghipoor, H. and Noori, M.D. (2018), "Experimental and numerical study on energy absorption of lattice-core sandwich beam", Steel Compos. Struct., 27(2), 135-147. https://doi.org/http://dx.doi.org/10.12989/scs.2018.27.2.135
- Taghipoor, H. and Sadeghian, A. (2022), "Experimental investigation of single and hybrid-fiber reinforced concrete under drop weight test. Struct., 43, 1073-1083. https://doi.org/10.1016/j.istruc.2022.07.030.
- Taghipoor, H. and Sefidi, M. (2022), "Energy absorption of foam-filled corrugated core sandwich panels under quasi-static loading", Proceed. Institut. Mech. Eng., Part L: J. Mater. Design Appl., 146442072211104. https://doi.org/10.1177/14644207221110483.
- Vaidya, S., Zhang, L., Maddala, D., Hebert,R., Wright, J.T., Shukla, A. and Kim, J.H. (2015), "Quasi-static response of sandwich steel beams with corrugated cores", Eng. Struct., 97, 80-89. https://doi.org/10.1016/j.engstruct.2015.04.009.
- Wei, Z., Zok, F. W. and Evans, A.G. (2006), "Design of Sandwich Panels With Prismatic Cores", J. Eng. Mater. Tech., 128(2), 186. https://doi.org/10.1115/1.2172279.
- Xiong, J., Vaziri, A., Ma, L., Papadopoulos, J. and Wu, L. (2012), Compression and impact testing of two-layer composite pyramidal-core sandwich panels", Compos. Struct., 94(2), 793-801. https://doi.org/10.1016/j.compstruct.2011.09.018.
- Yang, K., Qin, Q., Zhai, Z., Qiao, C., Chen, Y. and Yang, J. (2018), "Dynamic response of self-locked energy absorption system under impact loadings", Int. J. Impact Eng., 122(June), 209-227. https://doi.org/10.1016/j.ijimpeng.2018.08.011.
- Yazdani Sarvestani, H., Akbarzadeh, A.H., Mirbolghasemi, A. and Hermenean, K. (2018), "3D printed meta-sandwich structures: Failure mechanism, energy absorption and multi-hit capability. Mater. Des., 160, 179-193. https://doi.org/10.1016/j.matdes.2018.08.06.1
- Yu, B., Han, B., Ni, C.Y., Zhang, Q.C., Chen, C.Q. and Lu, T.J. (2015), "Dynamic crushing of all metallic corrugated panels filled with close celled aluminum foams", J. Appl. Mech., 82(1), 11006. https://doi.org/10.1115/1.4028995.