DOI QR코드

DOI QR Code

Energy absorption optimization on a sandwich panel with lattice core under the low-velocity impact

  • 투고 : 2022.03.29
  • 심사 : 2023.02.13
  • 발행 : 2023.02.25

초록

This paper focuses on the energy absorption of lattice core sandwich structures of different configurations. The diamond lattice unit cell, which has been extensively investigated for energy absorption applications, is the starting point for this research. The energy absorption behaviour of sandwich structures with an expanded metal sheet as the core is investigated at low-velocity impact loading. Numerical simulations were carried out using ABAQUS/EXPLICIT and the results were thoroughly compared with the experimental results, which indicated desirable accuracy. A parametric analysis, using a Box-Behnken design (BBD), as a method for the design of experiments (DOE), was performed. The samples fabricated in three levels of parameters include 0.081, 0.145, and 0.562 mm2 Cell sizes, and 0, 45, and 90-degree cell orientation, which were investigated. It was observed from experimental data that the angle of cells orientation had the highest degree of influence on the specific energy absorption. The results showed that the angle of cells orientation has been the most influential parameter to increase the peak forces. The results from using the design expert software showed the optimal specific energy absorption and peak force to be 1786 J/kg and 26314.4 N, respectively. The obtained R2 values and normal probability plots indicated a good agreement between the experimental results and those predicted by the model.

키워드

참고문헌

  1. Kueh, A.B., Tan, C.Y., Yahya, M.Y. and Wahit, M.U. (2022), "Impact resistance efficiency of bio-inspired sandwich beam with different arched core materials", Steel Compos. Struct., 44(1), 100-105. https://doi.org/https://doi.org/10.12989/scs.2022.44.1.105.
  2. Albooyeh, A., Soleymani, P. and Taghipoor, H. (2022), "Evaluation of the mechanical properties of hydroxyapatite-silica aerogel/epoxy nanocomposites: Optimizing by response surface approach", J. Mech. Behav. Biomed. Mater., 136, 105513. https://doi.org/10.1016/j.jmbbm.2022.105513.
  3. ASTM Int. (2009), Standard Test Methods for Tension Testing of Metallic Materials 1. Astm, C, 1-27. https://doi.org/10.1520/E0008.
  4. Borges, H., Martinez, G. and Graciano, C. (2016), "Impact response of expanded metal tubes: A numerical investigation", Thin Wall. Struct., 105, 71-80. https://doi.org/10.1016/j.tws.2016.04.005.
  5. Chen, V.C.P., Tsui, K.L., Barton, R.R. and Meckesheimer, M. (2006), "A review on design, modeling and applications of computer experiments", IIE Transactions, 38(4), 273-291. https://doi.org/10.1080/07408170500232495.
  6. Deshpande, V. and Fleck, N. (2001), "Collapse of truss core sandwich beams in 3-point bending", Int. J. Solid. Struct., 38(36-37), 6275-6305. https://doi.org/10.1016/S0020-7683(01)00103-2.
  7. Dragoni, E. (2013), "Optimal mechanical design of tetrahedral truss cores for sandwich constructions. J. Sandw. Struct. Mater., 15(4), 464-484. https://doi.org/10.1177/1099636213487364.
  8. Eyvazian, A., Eltai, E., Musharavati, F., Taghipoor, H., Sebaey, T. A. and Talebizadehsardari, P. (2020), "Experimental and numerical investigations on axial crushing of square cross - sections tube with vertical wave", Steel Compos. Struct., 36(2), 119-141. https://doi.org/10.12989. https://doi.org/10.12989
  9. Eyvazian, A., Taghipoor, H. and Tran, T. (2022), "Analytical and experimental investigations on axial crushing of aluminum tube with vertically corrugated", Int. J. Crashworthiness, 27(4), 1032-1045. https://doi.org/10.1080/13588265.2021.1892954.
  10. Frostig, Y., Baruch, M., Vilnay, O. and Sheinman, I. (1992), "High-Order Theory for Sandwich-Beam Behavior with Transversely Flexible Core", J. Eng. Mech., 118(5), 1026-1043. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:5(1026).
  11. Guruprasad, S. and Mukherjee, A. (2000a), "Layered sacrificial claddings under blast loading Part I - analytical studies", Int. J. Impact Eng., 24(9), 957-973. https://doi.org/10.1016/S0734-743X(00)00004-X.
  12. Guruprasad, S. and Mukherjee, A. (2000b), "Layered sacrificial claddings under blast loading Part II - Experimental studies", Int. J. Impact Eng., 24(9), 975-984. https://doi.org/10.1016/S0734-743X(00)00005-1.
  13. Ha, N. S., Lu, G. and Xiang, X. (2019), "Energy absorption of a bio-inspired honeycomb sandwich panel", J. Mater. Sci., 54(8), 6286-6300. https://doi.org/10.1007/s10853-018-3163-x.
  14. Hanifehzadeh, M. and Mousavi, M.M.R. (2019), "Predicting the structural performance of sandwich concrete panels subjected to blast load considering dynamic increase factor", J. Civil Eng., Sci. Tech., 10(1), 45-58. https://doi.org/10.33736/jcest.1067.2019.
  15. Design-Expert® version 10 (2017), https://www.statease.com.
  16. Hundley, J.M., Clough, E.C. and Jacobsen, A.J. (2015), "The low velocity impact response of sandwich panels with lattice core reinforcement", Int. J. Impact Eng., 84, 64-77. https://doi.org/10.1016/j.ijimpeng.2015.05.009.
  17. Kooistra, G.W. and Wadley, H.N.G. (2007), "Lattice truss structures from expanded metal sheet", Materials and Design, 28(2), 507-514. https://doi.org/10.1016/j.matdes.2005.08.013.
  18. Kueh, A.B.H. and Siaw, Y.Y. (2021), "Impact resistance of bio-inspired sandwich beam with side-arched and honeycomb dual-core", Compos. Struct., 275, 114439. https://doi.org/10.1016/j.compstruct.2021.114439.
  19. Le, V.T., Ha, N.S. and Goo, N.S. (2021), "Advanced sandwich structures for thermal protection systems in hypersonic vehicles: A review", Compos. Part B: Eng., 226, 109301. https://doi.org/10.1016/j.compositesb.2021.109301.
  20. Mines, R.A.W., Tsopanos, S., Shen, Y., Hasan, R. and McKown, S.T. (2013), "Drop weight impact behaviour of sandwich panels with metallic micro lattice cores", Int. J. Impact Eng., 60, 120-132. https://doi.org/10.1016/j.ijimpeng.2013.04.007.
  21. Myers, R.H., Douglas C. Montgomery and Anderson-Cook, C.M. (2016), "Response Surface Methodology: Process and Product Optimization Using Designed Experiments", John Wiley and Sons, 4th Editio.
  22. Niyaraki, M.N., Mirzaei, J. and Taghipoor, H. (2022), "Evaluation of the effect of nanomaterials and fibers on the mechanical behavior of polymer-based nanocomposites using Box-Behnken response surface methodology", Polymer Bulletin. https://doi.org/10.1007/s00289-022-04517-3.
  23. Olabi, A.G., Morris, E., Hashmi, M.S.J. and Gilchrist, M.D. (2008), "Optimised design of nested circular tube energy absorbers under lateral impact loading", Int. J. Mech. Sci., 50(1), 104-116. https://doi.org/10.1016/j.ijmecsci.2007.04.005.
  24. Palomba, G., Epasto, G., Crupi, V. and Guglielmino, E. (2018), "Single and double-layer honeycomb sandwich panels under impact loading", Int. J. Impact Eng., 121, 77-90. https://doi.org/10.1016/j.ijimpeng.2018.07.013.
  25. Shen, Y., Cantwell, W., Mines, R. and Li, Y. (2014), "Low-velocity impact performance of lattice structure core based sandwich panels", J. Compos. Mater., 48(25), 3153-3167. https://doi.org/10.1177/0021998313507616.
  26. Simone, A.E. and Gibson, L.J. (1998), "Aluminum foams produced by liquid-state processes", Acta Materialia, 46(9), 3109-3123. https://doi.org/10.1016/S1359-6454(98)00017-2.
  27. Taghipoor, H. and Damghani Nouri, M. (2019), "Experimental and numerical investigation of lattice core sandwich beams under low-velocity bending impact. J. Sandw. Struct. Mater., 21(6), 2154-2177. https://doi.org/10.1177/1099636218761315.
  28. Taghipoor, H. and Damghani Nouri, M. (2020), "Axial crushing and transverse bending responses of sandwich structures with lattice core", J. Sandw. Struct. Mater., 22(3), 572-598. https://doi.org/10.1177/1099636218761321.
  29. Taghipoor, H. and Eyvazian, A. (2022), "Quasi-static axial crush response and energy absorption of composite wrapped metallic thin-walled tube", J. Braz. Soc. Mech. Sci. Eng., 44(4), 158. https://doi.org/10.1007/s40430-022-03449-3.
  30. Taghipoor, H., Eyvazian, A., Ghiaskar, A., Praveen Kumar, A., Magid Hamouda, A. and Gobbi, M. (2020a), "Experimental and numerical study of lattice-core sandwich panels under low-speed impact", Materials Today: Proceedings, 27(xxxx), 1487-1492. https://doi.org/10.1016/j.matpr.2020.03.001.
  31. Taghipoor, H., Eyvazian, A., Ghiaskar, A., Praveen Kumar, A., Magid Hamouda, A. and Gobbi, M. (2020b), "Experimental investigation of the thin-walled energy absorbers with different sections including surface imperfections under low-speed impact test", Materials Today: Proceedings, 27(xxxx), 1498-1504. https://doi.org/10.1016/j.matpr.2020.03.006.
  32. Taghipoor, H., Eyvazian, A., Musharavati, F., Sebaey, T. A. and Ghiaskar, A. (2020), "Experimental investigation of the three-point bending properties of sandwich beams with polyurethane foam-filled lattice cores", Struct., 28, 424-432. https://doi.org/10.1016/j.istruc.2020.08.082.
  33. Taghipoor, H., Fereidoon, A., Ghasemi-Ghalebahman, A. and Mirzaei, J. (2022), "Experimental assessment of mechanical behavior of basalt/graphene/PP-g-MA-reinforced polymer nanocomposites by response surface methodology", Polymer Bulletin, 0123456789. https://doi.org/10.1007/s00289-022-04420-x.
  34. Taghipoor, H., Ghiaskar, A. and Shavalipour, A. (2021), "Crashworthiness performance of thin-walled, square tubes with circular hole discontinuities under high-speed impact loading", Int. J. Crashworthiness, 1-13. https://doi.org/10.1080/13588265.2021.1981125.
  35. Taghipoor, H. and Mirzaei, J. (2023), "Statistical predicting and optimization of the tensile properties of natural fiber bio-composites", Polymer Bulletin. https://doi.org/10.1007/s00289-023-04713-9.
  36. Taghipoor, H. and Noori, M.D. (2018), "Experimental and numerical study on energy absorption of lattice-core sandwich beam", Steel Compos. Struct., 27(2), 135-147. https://doi.org/http://dx.doi.org/10.12989/scs.2018.27.2.135
  37. Taghipoor, H. and Sadeghian, A. (2022), "Experimental investigation of single and hybrid-fiber reinforced concrete under drop weight test. Struct., 43, 1073-1083. https://doi.org/10.1016/j.istruc.2022.07.030.
  38. Taghipoor, H. and Sefidi, M. (2022), "Energy absorption of foam-filled corrugated core sandwich panels under quasi-static loading", Proceed. Institut. Mech. Eng., Part L: J. Mater. Design Appl., 146442072211104. https://doi.org/10.1177/14644207221110483.
  39. Vaidya, S., Zhang, L., Maddala, D., Hebert,R., Wright, J.T., Shukla, A. and Kim, J.H. (2015), "Quasi-static response of sandwich steel beams with corrugated cores", Eng. Struct., 97, 80-89. https://doi.org/10.1016/j.engstruct.2015.04.009.
  40. Wei, Z., Zok, F. W. and Evans, A.G. (2006), "Design of Sandwich Panels With Prismatic Cores", J. Eng. Mater. Tech., 128(2), 186. https://doi.org/10.1115/1.2172279.
  41. Xiong, J., Vaziri, A., Ma, L., Papadopoulos, J. and Wu, L. (2012), Compression and impact testing of two-layer composite pyramidal-core sandwich panels", Compos. Struct., 94(2), 793-801. https://doi.org/10.1016/j.compstruct.2011.09.018.
  42. Yang, K., Qin, Q., Zhai, Z., Qiao, C., Chen, Y. and Yang, J. (2018), "Dynamic response of self-locked energy absorption system under impact loadings", Int. J. Impact Eng., 122(June), 209-227. https://doi.org/10.1016/j.ijimpeng.2018.08.011.
  43. Yazdani Sarvestani, H., Akbarzadeh, A.H., Mirbolghasemi, A. and Hermenean, K. (2018), "3D printed meta-sandwich structures: Failure mechanism, energy absorption and multi-hit capability. Mater. Des., 160, 179-193. https://doi.org/10.1016/j.matdes.2018.08.06.1
  44. Yu, B., Han, B., Ni, C.Y., Zhang, Q.C., Chen, C.Q. and Lu, T.J. (2015), "Dynamic crushing of all metallic corrugated panels filled with close celled aluminum foams", J. Appl. Mech., 82(1), 11006. https://doi.org/10.1115/1.4028995.