DOI QR코드

DOI QR Code

Assessment of multi-physical field effects on nonlinear static stability behavior of nanoshells based on a numerical approach

  • Zhanlei Wang (College of Civil and Architecture Engineering, Chuzhou University) ;
  • Ye Chen (Shijiazhuang Institute of Railway Technology)
  • 투고 : 2021.06.17
  • 심사 : 2022.12.12
  • 발행 : 2023.02.25

초록

Buckling and post-buckling behaviors of geometrically perfect double-curvature shells made from smart composites have been investigated. The shell has been supposed to be exposed to transverse mechanical loading and magneto-electro-elastic (MEE) coupling. The composite shell has been made of two constituents which are piezoelectric and magnetic ingredients. Thus, the elastic properties might be variable based upon the percentages of the constituents. Incorporating small scale impacts in regard to nonlocal theory leads to the establishment of the governing equations for the double-curvature nanoshell. Such nanoshell stability will be shown to be affected by composite ingredients. More focus has been paid to the effects of small scale factor, electric voltage and magnetic intensity on stability curves of the nanoshell.

키워드

참고문헌

  1. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021), "Modeling and analysis of the imperfect FGM-damaged RC hybrid beams", Adv. Comput. Design, 6(2), 117-133. https://doi.org/10.12989/acd.2021.6.2.117.
  2. Abdullah, W.N., Khalaf, B.S., Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2021), "Thermal effects on dynamic response of GOP-Reinforced beams under blast load", Adv. Concrete Construct., 12(3), 167-174. https://doi.org/10.12989/acc.2021.12.3.167.
  3. Abdulrazzaq, M.A., Muhammad, A.K., Kadhim, Z.D. and Faleh, N.M. (2020), "Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM", Coupled Syst. Mech., 9(3), 201-217. https://doi.org/10.12989/csm.2020.9.3.201.
  4. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections," Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  5. Ahmed, R.A., Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020), "A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams", Adv. Materials Res., 9(1), 33-48. https://doi.org/10.12989/amr.2020.9.1.033.
  6. Ahmed, R.A., Al-Toki, M.H., Faleh, N.M. and Fenjan, R.M. (2021), "Nonlinear Stability of Higher-Order Porous Metal Foam Curved Panels with Stiffeners", Transport Porous Med., 1-16. https://doi.org/10.1007/s11242-021-01691-2.
  7. Akbas, S.D. (2016), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. http://dx.doi.org/10.12989/sss.2016.18.6.1125.
  8. Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities," Struct. Monitor. Maintenance, 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.
  9. Al-Maliki, A.F., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Design, 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.
  10. Barati, M.R. (2017), "Coupled effects of electrical polarization-strain gradient on vibration behavior of double-layered flexoelectric nanoplates," Smart Struct. Syst, 20(5), 573-581. https://doi.org/10.12989/sss.2017.20.5.573.
  11. Barati, M.R. and Zenkour, A.M. (2019). "Thermal post-buckling analysis of closed circuit flexoelectric nanobeams with surface effects and geometrical imperfection", Mech. Adv. Materials Struct., 26(17), 1482-1490. https://doi.org/10.1080/15376494.2018.1432821.
  12. Barati, M.R. and Zenkour, A. (2019b), "Investigating instability regions of harmonically loaded refined shear deformable inhomogeneous nanoplates", Iranian J. Sci. Tech., Transact. Mech. Eng., 43(3), 393-404. https://doi.org/10.1007/s40997-018-0215-4.
  13. Ebrahimi, F. and Barati, M.R. (2018a), "Axial magnetic field effects on dynamic characteristics of embedded multiphase nanocrystalline nanobeams", Microsyst. Technol., 24(8), 3521-3536. https://doi.org/10.1007/s00542-018-3771-z.
  14. Ebrahimi, F. and Barati, M.R. (2018b), "Damping vibration analysis of graphene sheets on viscoelastic medium incorporating hygro-thermal effects employing nonlocal strain gradient theory", Compos. Struct., 185, 241-253. https://doi.org/10.1016/j.compstruct.2017.10.021.
  15. Ebrahimi, F. and Barati, M.R. (2018c). "Surface and flexoelectricity effects on size-dependent thermal stability analysis of smart piezoelectric nanoplates", Struct. Eng. Mech. Int. J., 67(2), 143-153. https://doi.org/10.12989/sem.2018.67.2.143.
  16. Ebrahimi, F. and Barati, M.R. (2018d), "A nonlocal strain gradient refined plate model for thermal vibration analysis of embedded graphene sheets via DQM", Struct. Eng. Mech. Int. J., 66(6), 693-701. https://doi.org/10.12989/sem.2018.66.6.693.
  17. Ebrahimi, F. and Barati, M.R. (2019a), "Hygrothermal effects on static stability of embedded single-layer graphene sheets based on nonlocal strain gradient elasticity theory", J. Thermal Stress., 42(12), 1535-1550. https://doi.org/10.1080/01495739.2019.1662352.
  18. Ebrahimi, F. and Barati, M.R. (2019b). "Damping Vibration Behavior of Viscoelastic Porous Nanocrystalline Nanobeams Incorporating Nonlocal-Couple Stress and Surface Energy Effects", Iranian J. Sci. Tech., Transact. Mech. Eng., 43(2), 187-203. https://doi.org/10.1007/s40997-017-0127-8.
  19. Ebrahimi, F. and Barati, M.R. (2020), "Propagation of waves in nonlocal porous multi-phase nanocrystalline nanobeams under longitudinal magnetic field", Wave. Random Complex Media, 30(2), 308-327. https://doi.org/10.1080/17455030.2018.1506596.
  20. Eringen, A.C. (1972), "Linear theory of nonlocal elasticity and dispersion of plane waves," Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X.
  21. Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupled Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
  22. Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020a), "Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects", Adv. Aircraft Spacecraft Sci., 7(2), 169-186. https://doi.org/10.12989/aas.2020.7.2.169.
  23. Fenjan, R.M., Ahmed, R.A., Hamad, L.B. and Faleh, N.M. (2020b), "A review of numerical approach for dynamic response of strain gradient metal foam shells under constant velocity moving loads", Adv. Comput. Design, 5(4), 349-362. https://doi.org/10.12989/acd.2020.5.4.349.
  24. Guo, J., Chen, J. and Pan, E. (2016), "Static deformation of anisotropic layered magnetoelectroelastic plates based on modified couple-stress theory," Compos. Part B: Eng., 107, 84-96. https://doi.org/10.1016/j.compositesb.2016.09.044.
  25. Hamad, L.B., Khalaf, B.S. and Faleh, N.M. (2019), "Analysis of static and dynamic characteristics of strain gradient shell structures made of porous nano-crystalline materials", Adv. Mater. Res., 8(3), 179-96. https://doi.org/10.12989/amr.2019.8.3.179.
  26. Heydari, A. (2020), "Buckling analysis of noncontinuous linear and quadratic axially graded Euler beam subjected to axial span-load in the presence of shear layer", Adv. Comput. Des., 5(4), 397-416. https://doi.org/10.12989/acd.2020.5.4.397.
  27. Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells", Smart Mater. Struct., 23(12), 125036. https://doi.org/10.1088/0964-1726/23/12/125036.
  28. Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Buckling and vibration analysis of layered and multiphase magneto-electro-elastic beam under thermal environment," Multidiscipline Model. Materials Struct., 3(4), 461-476. https://doi.org/10.1163/157361107782106401.
  29. Li, Y. and Shi, Z. (2009), "Free vibration of a functionally graded piezoelectric beam via state-space based differential quadrature," Compos. Struct., 87(3), 257-264. https://doi.org/10.1016/j.compstruct.2008.01.012.
  30. Liu, H., Liu, H. and Yang, J. (2018), "Vibration of FG magneto-electro-viscoelastic porous nanobeams on visco-Pasternak foundation", Compos. Part B: Eng., 155, 244-256. https://doi.org/10.1016/j.compositesb.2018.08.042.
  31. Mirjavadi, S.S., Forsat, M., Badnava, S. and Barati, M.R. (2020a), "Analyzing nonlocal nonlinear vibrations of two-phase geometrically imperfect piezo-magnetic beams considering piezoelectric reinforcement scheme", J. Strain. Anal. Eng. Design, 55(7-8), 258-270. https://doi.org/10.1177%2F0309324720917285. https://doi.org/10.1177%2F0309324720917285
  32. Mirjavadi, S.S., Forsat, M., Badnava, S., Barati, M.R. and Hamouda, A.M.S. (2020b), "Nonlinear dynamic characteristics of nonlocal multi-phase magneto-electro-elastic nano-tubes with different piezoelectric constituents", Appl. Phys. A, 126(8), 1-16. https://doi.org/10.1007/s00339-020-03743-8.
  33. Mirjavadi, S.S., Bayani, H., Khoshtinat, N., Forsat, M., Barati, M. R. and Hamouda, A.M.S. (2020c), "On nonlinear vibration behavior of piezo-magnetic doubly-curved nanoshells", Smart Struct. Syst., 26(5), 631-640. https://doi.org/10.12989/sss.2020.26.5.631.
  34. Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Hamouda, A.M.S. (2020d), "Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners", Struct. Eng. Mech., 75(6), 701-711. https://doi.org/10.12989/sem.2020.75.6.701.
  35. Mirjavadi, S.S., Forsat, M., Mollaee, S., Barati, M.R., Afshari, B. M. and Hamouda, A.M.S. (2020e). "Post-buckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression", Comput. Concrete, 26(1), 21-30. https://doi.org/10.12989/cac.2020.26.1.021.
  36. Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M. R. and Hamouda, A.M.S. (2020f), "Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force", Adv. Nano Res., 9(1), 47-58. https://doi.org/10.12989/anr.2020.9.1.047.
  37. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020g), "Investigating nonlinear forced vibration behavior of multi-phase nanocomposite annular sector plates using Jacobi elliptic functions", Steel Compos. Struct., 36(1), 87-101. https://doi.org/10.12989/scs.2020.36.1.087.
  38. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020h). "Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite", Steel. Compos. Struct., 36(1), 63-74. https://doi.org/10.12989/scs.2020.36.1.063.
  39. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020i), "Assessment of transient vibrations of graphene oxide reinforced plates under pulse loads using finite strip method", Comput. Concrete, 25(6), 575-585. https://doi.org/10.12989/cac.2020.25.6.575.
  40. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020j). Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/scs.2020.35.4.567.
  41. Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A N. and Khan, I. (2020k), "Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection", Adv. Concrete Const., 9(4), 397-406. https://doi.org/10.12989/acc.2020.9.4.397.
  42. Muhammad, A.K., Hamad, L.B., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing large-amplitude vibration of nonlocal beams made of different piezo-electric materials in thermal environment", Adv. Materials Res., 8(3), 237-257. https://doi.org/10.12989/amr.2019.8.3.237.
  43. Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates," Int. J. Eng. Sci., 43(3-4), 321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006.
  44. Polatov, A.M., Khaldjigitov, A.A. and Ikramov, A.M. (2020), "Algorithm of solving the problem of small elastoplastic deformation of fiber composites by FEM", Adv. Comput. Design, 5(3), 305-321. https://doi.org/10.12989/acd.2020.5.3.305.
  45. Raheef, K.M., Ahmed, R.A., Nayeeif, A.A., Fenjan, R.M. and Faleh, N.M. (2021), "Analyzing dynamic response of nonlocal strain gradient porous beams under moving load and thermal environment", Geomech. Eng., 26(1), 89-99. https://doi.org/10.12989/gae.2021.26.1.089.
  46. Singh, A. and Kumari, P. (2020), "Analytical free vibration solution for angle-ply piezolaminated plate under cylindrical bending: A piezo-elasticity approach", Adv. Comput. Design, 5(1), 55-89. https://doi.org/10.12989/acd.2020.5.1.055.
  47. Shariati, A., Barati, M.R., Ebrahimi, F., Singhal, A. and Toghroli, A. (2020a), "Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory", Adv Nano Res, 8(4), 265-276. https://doi.org/10.12989/anr.2020.8.4.265.
  48. Shariati, A., Barati, M.R., Ebrahimi, F. and Toghroli, A. (2020b), "Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory", Adv. Nano Res., 8(3), 191-202. https://doi.org/10.12989/anr.2020.8.3.191.
  49. Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams," Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009.
  50. Yang, W., Lin, Y., Chen, X., Xu, Y., Zhang, H., Ciappina, M. and Song, X. (2021), "Wave mixing and high-harmonic generation enhancement by a two-color field driven dielectric metasurface", Chinese Optics Letters, 19(12), 123202. https://doi.org/10.1364/COL.19.123202.
  51. Zhou, H., Xu, C., Lu, C., Jiang, X., Zhang, Z., Wang, J. and Wang, L. (2021), "Investigation of transient magnetoelectric response of magnetostrictive/piezoelectric composite applicable for lightning current sensing", Sensor Actuators A: Phys., 329, 112789. https://doi.org/10.1016/j.sna.2021.112789.