References
- Abderezak, R., Daouadji, T.H. and Rabia, B. (2021), "Modeling and analysis of the imperfect FGM-damaged RC hybrid beams", Adv. Comput. Design, 6(2), 117-133. https://doi.org/10.12989/acd.2021.6.2.117.
- Abdullah, W.N., Khalaf, B.S., Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2021), "Thermal effects on dynamic response of GOP-Reinforced beams under blast load", Adv. Concrete Construct., 12(3), 167-174. https://doi.org/10.12989/acc.2021.12.3.167.
- Abdulrazzaq, M.A., Muhammad, A.K., Kadhim, Z.D. and Faleh, N.M. (2020), "Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM", Coupled Syst. Mech., 9(3), 201-217. https://doi.org/10.12989/csm.2020.9.3.201.
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections," Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
- Ahmed, R.A., Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020), "A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams", Adv. Materials Res., 9(1), 33-48. https://doi.org/10.12989/amr.2020.9.1.033.
- Ahmed, R.A., Al-Toki, M.H., Faleh, N.M. and Fenjan, R.M. (2021), "Nonlinear Stability of Higher-Order Porous Metal Foam Curved Panels with Stiffeners", Transport Porous Med., 1-16. https://doi.org/10.1007/s11242-021-01691-2.
- Akbas, S.D. (2016), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. http://dx.doi.org/10.12989/sss.2016.18.6.1125.
- Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities," Struct. Monitor. Maintenance, 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.
- Al-Maliki, A.F., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Design, 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.
- Barati, M.R. (2017), "Coupled effects of electrical polarization-strain gradient on vibration behavior of double-layered flexoelectric nanoplates," Smart Struct. Syst, 20(5), 573-581. https://doi.org/10.12989/sss.2017.20.5.573.
- Barati, M.R. and Zenkour, A.M. (2019). "Thermal post-buckling analysis of closed circuit flexoelectric nanobeams with surface effects and geometrical imperfection", Mech. Adv. Materials Struct., 26(17), 1482-1490. https://doi.org/10.1080/15376494.2018.1432821.
- Barati, M.R. and Zenkour, A. (2019b), "Investigating instability regions of harmonically loaded refined shear deformable inhomogeneous nanoplates", Iranian J. Sci. Tech., Transact. Mech. Eng., 43(3), 393-404. https://doi.org/10.1007/s40997-018-0215-4.
- Ebrahimi, F. and Barati, M.R. (2018a), "Axial magnetic field effects on dynamic characteristics of embedded multiphase nanocrystalline nanobeams", Microsyst. Technol., 24(8), 3521-3536. https://doi.org/10.1007/s00542-018-3771-z.
- Ebrahimi, F. and Barati, M.R. (2018b), "Damping vibration analysis of graphene sheets on viscoelastic medium incorporating hygro-thermal effects employing nonlocal strain gradient theory", Compos. Struct., 185, 241-253. https://doi.org/10.1016/j.compstruct.2017.10.021.
- Ebrahimi, F. and Barati, M.R. (2018c). "Surface and flexoelectricity effects on size-dependent thermal stability analysis of smart piezoelectric nanoplates", Struct. Eng. Mech. Int. J., 67(2), 143-153. https://doi.org/10.12989/sem.2018.67.2.143.
- Ebrahimi, F. and Barati, M.R. (2018d), "A nonlocal strain gradient refined plate model for thermal vibration analysis of embedded graphene sheets via DQM", Struct. Eng. Mech. Int. J., 66(6), 693-701. https://doi.org/10.12989/sem.2018.66.6.693.
- Ebrahimi, F. and Barati, M.R. (2019a), "Hygrothermal effects on static stability of embedded single-layer graphene sheets based on nonlocal strain gradient elasticity theory", J. Thermal Stress., 42(12), 1535-1550. https://doi.org/10.1080/01495739.2019.1662352.
- Ebrahimi, F. and Barati, M.R. (2019b). "Damping Vibration Behavior of Viscoelastic Porous Nanocrystalline Nanobeams Incorporating Nonlocal-Couple Stress and Surface Energy Effects", Iranian J. Sci. Tech., Transact. Mech. Eng., 43(2), 187-203. https://doi.org/10.1007/s40997-017-0127-8.
- Ebrahimi, F. and Barati, M.R. (2020), "Propagation of waves in nonlocal porous multi-phase nanocrystalline nanobeams under longitudinal magnetic field", Wave. Random Complex Media, 30(2), 308-327. https://doi.org/10.1080/17455030.2018.1506596.
- Eringen, A.C. (1972), "Linear theory of nonlocal elasticity and dispersion of plane waves," Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X.
- Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupled Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
- Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020a), "Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects", Adv. Aircraft Spacecraft Sci., 7(2), 169-186. https://doi.org/10.12989/aas.2020.7.2.169.
- Fenjan, R.M., Ahmed, R.A., Hamad, L.B. and Faleh, N.M. (2020b), "A review of numerical approach for dynamic response of strain gradient metal foam shells under constant velocity moving loads", Adv. Comput. Design, 5(4), 349-362. https://doi.org/10.12989/acd.2020.5.4.349.
- Guo, J., Chen, J. and Pan, E. (2016), "Static deformation of anisotropic layered magnetoelectroelastic plates based on modified couple-stress theory," Compos. Part B: Eng., 107, 84-96. https://doi.org/10.1016/j.compositesb.2016.09.044.
- Hamad, L.B., Khalaf, B.S. and Faleh, N.M. (2019), "Analysis of static and dynamic characteristics of strain gradient shell structures made of porous nano-crystalline materials", Adv. Mater. Res., 8(3), 179-96. https://doi.org/10.12989/amr.2019.8.3.179.
- Heydari, A. (2020), "Buckling analysis of noncontinuous linear and quadratic axially graded Euler beam subjected to axial span-load in the presence of shear layer", Adv. Comput. Des., 5(4), 397-416. https://doi.org/10.12989/acd.2020.5.4.397.
- Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells", Smart Mater. Struct., 23(12), 125036. https://doi.org/10.1088/0964-1726/23/12/125036.
- Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Buckling and vibration analysis of layered and multiphase magneto-electro-elastic beam under thermal environment," Multidiscipline Model. Materials Struct., 3(4), 461-476. https://doi.org/10.1163/157361107782106401.
- Li, Y. and Shi, Z. (2009), "Free vibration of a functionally graded piezoelectric beam via state-space based differential quadrature," Compos. Struct., 87(3), 257-264. https://doi.org/10.1016/j.compstruct.2008.01.012.
- Liu, H., Liu, H. and Yang, J. (2018), "Vibration of FG magneto-electro-viscoelastic porous nanobeams on visco-Pasternak foundation", Compos. Part B: Eng., 155, 244-256. https://doi.org/10.1016/j.compositesb.2018.08.042.
- Mirjavadi, S.S., Forsat, M., Badnava, S. and Barati, M.R. (2020a), "Analyzing nonlocal nonlinear vibrations of two-phase geometrically imperfect piezo-magnetic beams considering piezoelectric reinforcement scheme", J. Strain. Anal. Eng. Design, 55(7-8), 258-270. https://doi.org/10.1177%2F0309324720917285. https://doi.org/10.1177%2F0309324720917285
- Mirjavadi, S.S., Forsat, M., Badnava, S., Barati, M.R. and Hamouda, A.M.S. (2020b), "Nonlinear dynamic characteristics of nonlocal multi-phase magneto-electro-elastic nano-tubes with different piezoelectric constituents", Appl. Phys. A, 126(8), 1-16. https://doi.org/10.1007/s00339-020-03743-8.
- Mirjavadi, S.S., Bayani, H., Khoshtinat, N., Forsat, M., Barati, M. R. and Hamouda, A.M.S. (2020c), "On nonlinear vibration behavior of piezo-magnetic doubly-curved nanoshells", Smart Struct. Syst., 26(5), 631-640. https://doi.org/10.12989/sss.2020.26.5.631.
- Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Hamouda, A.M.S. (2020d), "Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners", Struct. Eng. Mech., 75(6), 701-711. https://doi.org/10.12989/sem.2020.75.6.701.
- Mirjavadi, S.S., Forsat, M., Mollaee, S., Barati, M.R., Afshari, B. M. and Hamouda, A.M.S. (2020e). "Post-buckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression", Comput. Concrete, 26(1), 21-30. https://doi.org/10.12989/cac.2020.26.1.021.
- Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M. R. and Hamouda, A.M.S. (2020f), "Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force", Adv. Nano Res., 9(1), 47-58. https://doi.org/10.12989/anr.2020.9.1.047.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020g), "Investigating nonlinear forced vibration behavior of multi-phase nanocomposite annular sector plates using Jacobi elliptic functions", Steel Compos. Struct., 36(1), 87-101. https://doi.org/10.12989/scs.2020.36.1.087.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020h). "Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite", Steel. Compos. Struct., 36(1), 63-74. https://doi.org/10.12989/scs.2020.36.1.063.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020i), "Assessment of transient vibrations of graphene oxide reinforced plates under pulse loads using finite strip method", Comput. Concrete, 25(6), 575-585. https://doi.org/10.12989/cac.2020.25.6.575.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020j). Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/scs.2020.35.4.567.
- Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A N. and Khan, I. (2020k), "Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection", Adv. Concrete Const., 9(4), 397-406. https://doi.org/10.12989/acc.2020.9.4.397.
- Muhammad, A.K., Hamad, L.B., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing large-amplitude vibration of nonlocal beams made of different piezo-electric materials in thermal environment", Adv. Materials Res., 8(3), 237-257. https://doi.org/10.12989/amr.2019.8.3.237.
- Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates," Int. J. Eng. Sci., 43(3-4), 321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006.
- Polatov, A.M., Khaldjigitov, A.A. and Ikramov, A.M. (2020), "Algorithm of solving the problem of small elastoplastic deformation of fiber composites by FEM", Adv. Comput. Design, 5(3), 305-321. https://doi.org/10.12989/acd.2020.5.3.305.
- Raheef, K.M., Ahmed, R.A., Nayeeif, A.A., Fenjan, R.M. and Faleh, N.M. (2021), "Analyzing dynamic response of nonlocal strain gradient porous beams under moving load and thermal environment", Geomech. Eng., 26(1), 89-99. https://doi.org/10.12989/gae.2021.26.1.089.
- Singh, A. and Kumari, P. (2020), "Analytical free vibration solution for angle-ply piezolaminated plate under cylindrical bending: A piezo-elasticity approach", Adv. Comput. Design, 5(1), 55-89. https://doi.org/10.12989/acd.2020.5.1.055.
- Shariati, A., Barati, M.R., Ebrahimi, F., Singhal, A. and Toghroli, A. (2020a), "Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory", Adv Nano Res, 8(4), 265-276. https://doi.org/10.12989/anr.2020.8.4.265.
- Shariati, A., Barati, M.R., Ebrahimi, F. and Toghroli, A. (2020b), "Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory", Adv. Nano Res., 8(3), 191-202. https://doi.org/10.12989/anr.2020.8.3.191.
- Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams," Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009.
- Yang, W., Lin, Y., Chen, X., Xu, Y., Zhang, H., Ciappina, M. and Song, X. (2021), "Wave mixing and high-harmonic generation enhancement by a two-color field driven dielectric metasurface", Chinese Optics Letters, 19(12), 123202. https://doi.org/10.1364/COL.19.123202.
- Zhou, H., Xu, C., Lu, C., Jiang, X., Zhang, Z., Wang, J. and Wang, L. (2021), "Investigation of transient magnetoelectric response of magnetostrictive/piezoelectric composite applicable for lightning current sensing", Sensor Actuators A: Phys., 329, 112789. https://doi.org/10.1016/j.sna.2021.112789.