DOI QR코드

DOI QR Code

Seismic performance of CFS shear wall systems filled with polystyrene lightweight concrete: Experimental investigation and design methodology

  • 투고 : 2022.08.21
  • 심사 : 2023.02.16
  • 발행 : 2023.02.25

초록

Using light weight concrete as infill material in conventional cold-formed steel (CFS) shear wall systems can considerably increase their load bearing capacity, ductility, integrity and fire resistance. The compressive strength of the filler concrete is a key factor affecting the structural behaviour of the composite wall systems, and therefore, achieving maximum compressive strength in lightweight concrete while maintaining its lightweight properties is of significant importance. In this study a new type of optimum polystyrene lightweight concrete (OPLC) with high compressive strength is developed for infill material in composite CFS shear wall systems. To study the seismic behaviour of the OPLC-filled CFS shear wall systems, two full scale wall specimens are tested under cyclic loading condition. The effects of OPLC on load-bearing capacity, failure mode, ductility, energy dissipation capacity, and stiffness degradation of the walls are investigated. It is shown that the use of OPLC as infill in CFS shear walls can considerably improve their seismic performance by: (i) preventing the premature buckling of the stud members, and (ii) changing the dominant failure mode from brittle to ductile thanks to the bond-slip behaviour between OPLC and CFS studs. It is also shown that the design equations proposed by EC8 and ACI 318-14 standards overestimate the shear force capacity of OPLC-filled CFS shear wall systems by up to 80%. This shows it is necessary to propose methods with higher efficiency to predict the capacity of these systems for practical applications.

키워드

참고문헌

  1. Adamian, A., Hosseini Safari, K., Sheikholeslami, M., Habibi, M. Al-Furjan, M.S.H. and Chen, G. (2020), "Critical temperature and frequency characteristics of GPLs-reinforced composite doubly curved panel", Appl. Sci., 10(9), 3251. https://doi.org/10.3390/app10093251.
  2. Al-Furjan, M.S.H., Habibi, M., Jung, D.W., Chen, G., Safarpour, M. and Safarpour, H. (2021b), "Chaotic responses and nonlinear dynamics of the graphene nanoplatelets reinforced doubly-curved panel", Eur. J. Mech.-A/Solids, 85, 104091. https://doi.org/10.1016/j.euromechsol.2020.104091.
  3. Al-Furjan, M.S.H., Oyarhossein, M.A., Habibi, M., Safarpour, H. and Jung, D.W. (2020), "Frequency and critical angular velocity characteristics of rotary laminated cantilever microdisk via two-dimensional analysis", Thin. Wall. Struct., 157, 107111. https://doi.org/10.1016/j.tws.2020.107111.
  4. Al-Furjan, M.S.H., Samimi-Sohrforozani, E., Habibi, M., Jung, D.W. and Safarpour, H. (2021c), "Vibrational characteristics of a higher-order laminated composite viscoelastic annular microplate via modified couple stress theory", Compos. Struct., 257, 113152. https://doi.org/10.1016/j.compstruct.2020.113152.
  5. Al-Furjan, M.S.H., Oyarhossein, M.A., Habibi, M., Safarpour, H., Jung, D.W. and Tounsi, A. (2021a), "On the wave propagation of the multi-scale hybrid nanocomposite doubly curved viscoelastic panel", Compos. Struct., 255, 112947. https://doi.org/10.1016/j.compstruct.2020.112947.
  6. An, D., Xu, D., Ni, Z., Wang, Y.S.B. and Li, R. (2020), "Finite integral transform method for analytical solutions of static problems of cylindrical shell panels", Eur. J. Mech.-A/Solids, 83, 104033. https://doi.org/10.1016/j.euromechsol.2020.104033.
  7. Alibeigloo, A. (2020), "Three-dimensional thermoelasticity analysis of graphene platelets reinforced cylindrical panel", Eur. J. Mech.A/Solids., 81, 103941. https://doi.org/10.1016/j.euromechsol.2019.103941.
  8. Arefi, M. and Zenkour, A.M. (2016), "A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermo-electric environment", J. Sandw. Struct. Mater., 18(5), 624-651. https://doi.org/10.1177/1099636216652.
  9. Arefi, M. and Soltan Arani, A.H. (2020), "Nonlocal vibration analysis of the three-layered FG nanoplates subjected to applied electric potential considering thickness stretching effect", Proc. Inst. Mech. Eng., Part L: J. Mater.: Design Appl., 234(9), 1183-1202. https://doi.org/10.1177/1464420720928378.
  10. Arefi, M. and Civalek, O. (2020), "Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory", Arch. Civil. Mech. Eng., 20(1), 1-17. https://doi.org/10.1007/s43452-020-00032-2.
  11. Arefi, M. and Rahimi, G.H. (2010), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays., 5(12), 1442-1454. https://doi.org/10.5897/SRE.9000953.
  12. Arefi, M. and Rahimi, G.H. (2014), "Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder", Smart. Struct. Syst., 13(1), 1-24. https://doi.org/10.12989/sss.2014.13.1.001.
  13. Arefi, M. and Rahimi, G.H. (2012a), "Comprehensive thermoelastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory", Mechanika, 18(1), 5-13. https://doi.org/10.5755/j01.mech.18.1.1273.
  14. Arefi, M. and Rahimi, G.H. (2012b), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart. Struct. Syst., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127.
  15. Arefi, M. and Rahimi, G.H. (2012c), "Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity", Acta. Mech., 223(1), 63-79. https://doi.org/10.1007/s00707-011-0536-5.
  16. Arefi, M. (2013), "Nonlinear thermoelastic analysis of thick-walled functionally graded piezoelectric cylinder", Acta. Mech., 224(11), 2771-2783. https://doi.org/10.1007/s00707-013-0888-0.
  17. Arefi, M. (2014), "A complete set of equations for piezo-magnetoelastic analysis of a functionally graded thick shell of revolution", Lat. Amer. J. Solids. Struct., 11(11), 2073-2098. https://doi.org/10.1590/S1679-78252014001100009.
  18. Arefi, M., Mohammadi, M., Tabatabaeian, A., Dimitri, R. and Tornabene, F. (2018), "Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels", Steel. Compos. Struct., 27(4), 525-536. https://doi.org/10.12989/scs.2018.27.4.525.
  19. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phys. Sci, 6(27), 6315-6322. https://doi.org/10.5897/IJPS10.597.
  20. Arefi, M. and Nahas, I. (2014), "Nonlinear electro thermo elastic analysis of a thick spherical functionally graded piezoelectric shell", Compos. Struct., 118, 510-518. https://doi.org/10.1016/j.compstruct.2014.08.002.
  21. Arefi, M., Kiani, M. and Zenkour, A.M. (2020), "Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezomagnetic face sheets resting on Pasternak's foundation via MCST", J. Sandw. Struct. Mater., 22(1), 55-86. https://doi.org/10.1177/1099636217734279.
  22. Arefi, M. and Rahimi, G.H. (2011), "Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart. Struct. Syst., 8(5), 433-447. https://doi.org/10.12989/sss.2011.8.5.433.
  23. Arefi, M., Bidgoli, E.M.-R., Dimitri, R., Tornabene, F. and Reddy, J.N. (2019), "Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on Pasternak foundations", Appl. Sci., 9(8), 1580. https://doi.org/10.3390/app9081580.
  24. Arefi, M. and Zenkour, A.M. (2018), "Size-dependent electroelastic analysis of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory", J. Intel. Mater. Syst. Struct., 29(7), 1394-1406. https://doi.org/10.1177/1045389X17733333.
  25. Arefi, M. and Zenkour, A.M. (2019), "Effect of thermo-magneto-electro-mechanical fields on the bending behaviors of a three-layered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater., 21(2), 639-669. https://doi.org/10.1177/1099636217697497.
  26. Arefi, M. and Zenkour A.M. (2017a), "Transient analysis of a three-layer microbeam subjected to electric potential", Int. J. Smart. Nano. Mater., 8(1), 20-40. https://doi.org/10.1080/19475411.2017.1292967.
  27. Arefi, M., Zenkour, A.M. (2017b), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intel. Mater. Syst. Struct., 28(17), 2403-2413. https://doi.org/10.1177/1045389X17689930.
  28. Bhagat, S., Pitchaimani, J. and Murigendrappa, S.M. (2016), "Buckling and dynamic characteristics of a laminated cylindrical panel under non-uniform thermal load", Steel. Compos. Struct., 22(6), 1359-1389. https://doi.org/10.12989/scs.2016.22.6.1359.
  29. Biswal, M., Sahu, S.K.R., Asha, A.V. and Nanda, N. (2016), "Hygrothermal effects on buckling of composite shell-experimental and FEM results", Steel. Compos. Struct., 22(6), 1445-1463. https://doi.org/10.12989/scs.2016.22.6.1445.
  30. Brendel, B. and Ramm, E. (1980), "Linear and nonlinear stability analysis of cylindrical shells", Comput. Struct., 12(4), 549-558. https://doi.org/10.1016/0045-7949(80)90130-3.
  31. Bai, Y., Nardi, D.C., Zhou, X., Picon, R.A. and Florez-Lopez, J. (2021), "A new comprehensive model of damage for flexural subassemblies prone to fatigue", Comput. Struct., 256, 106639. https://doi.org/10.1016/j.compstruc.2021.106639.
  32. Chen, H., Miao, Y., Chen, Y., Fang, L., Zeng, L. and Shi, J. (2021), "Intelligent model-based integrity assessment of nonstationary mechanical system", J. Web. Eng., 20(2). https://doi.org/10.13052/jwe1540-9589.2022.
  33. Cheung, Y.K. and Cheung, M.S. (1972), "Vibration analysis of cylindrical panels", J. Sound. Vib., 22(1), 59-73. https://doi.org/10.1016/0022-460X(72)90844-9.
  34. Fan, X., Wei, G., Lin, X., Wang, X., Si, Z., Zhang, X. and Zhao, W. (2020), "Reversible switching of interlayer exchange coupling through atomically thin VO2 via electronic state modulation", Matter, 2(6), 1582-1593. https://doi.org/10.1016/j.matt.2020.04.001.
  35. Guo, Y., Mi, H. and Habibi, M. (2021), "Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system", Mech. Syst Signal. Proc., 157, 107723. https://doi.org/10.1016/j.ymssp.2021.107723.
  36. Guo, C., Ye, C., Ding, Y. and Wang, P. (2021), "A multi-state model for transmission system resilience enhancement against short-circuit faults caused by extreme weather events", IEEE. Transact. Power. Delivery., 36(4), 2374-2385. https://doi.org/10.1109/TPWRD.2020.3043938.
  37. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput. https://doi.org/10.1007/s00366-021-01456-x.
  38. Huang, X., Zhu, Y., Vafaei, P., Moradi, Z. and Davoudi, M. (2021a), "An iterative simulation algorithm for large oscillation of the applicable 2D-electrical system on a complex nonlinear substrate", Eng. Comput., https://doi.org/10.1007/s00366-021-01320-y.
  39. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021b), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. Comput., https://doi.org/10.1007/s00366-021-01395-7.
  40. Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021), "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Arch. Civ. Mech. Eng., 21, 139, https://doi.org/10.1007/s43452-021-00291-7.
  41. Heidari, Y., Arefi, M. and Irani-Rahaghi, M. (2021), "Free vibration analysis of cylindrical micro/nano-shell reinforced with CNTRC patches", Int. J. Appl. Mech. 13(04), 2150040. https://doi.org/10.1142/S175882512150040X.
  42. Isavand, S., Bodaghi, M., Shakeri M. and Aghazadeh Mohandesi, J. (2015), "Dynamic response of functionally gradient austenitic-ferritic steel composite panels under thermo-mechanical loadings", Steel. Compos. Struct., 18(1), 1-28. https://doi.org/10.12989/scs.2015.18.1.001.
  43. Jiao, J., Ghoreishi, S-M Moradi, Z. and Oslub, K. (2021), "Coupled particle swarm optimization method with genetic algorithm for the static-dynamic performance of the magneto-electro-elastic nanosystem", Eng. Comput. https://doi.org/10.1007/s00366-021-01391-x.
  44. Kholdi, M., Rahimi, G., Loghman, A., Ashrafi, H. and Arefi, M (2022), "Analysis of thick-wlled sherical shells subjected to various temperature gradients: Thermo-elasto-plastic and residual stress studies", Int. J. Appl. Mech., 13(9), 2150105. https://doi.org/10.1142/S1758825121501052.
  45. Keshav, V., Patel, S.N. and Kumar, R. (2019), "Stability and failure study of suddenly loaded laminated composite cylindrical panel", Int. J. Appl. Mech., 11(10), 1950093. https://doi.org/10.1142/S1758825119500935.
  46. Kumar, R., Dey, T. and Panda, S.K. (2019), "Instability and vibration analyses of FG cylindrical panels under parabolic axial compressions", Steel. Compos. Struct., 31(2), 187-199. https://doi.org/10.12989/scs.2019.31.2.187.
  47. Kouider, D., Kaci, A., Selim, M.M., Bousahla, A.A., Bourada, F. Tounsi, A., Tounsi, A. and Hussain, M. (2021), "An original four-variable quasi-3D shear deformation theory for the static and free vibration analysis of new type of sandwich plates with both FG face sheets and FGM hard core", Steel. Compos. Struct. 41(2), 167-191. https://doi.org/10.12989/scs.2021.41.2.167.
  48. Kim, Y. and Park, J. (2020), "An approximate approach on the buckling analysis of a composite lattice cylindrical panel", Adv. Compos. Mater., 29(6), 603-630. https://doi.org/10.1080/09243046.2020.1755100
  49. Lu, Z., Liu, W., Ding, H. and Chen, L. (2022b), "Energy transfer of an axially loaded beam with a parallel-coupled nonlinear vibration isolator", J. Vib. Acoust., 144(5). https://doi.org/10.1115/1.4054324.
  50. Lu, C., Zhou, H., Li, L., Yang, A., Xu, C., Ou, Z. and Tian, F. (2022a), "Split-core magnetoelectric current sensor and wireless current measurement application", Measurement: J. Int. Measur. Confed., 188, 110527. https://doi.org/10.1016/j.measurement.2021.110527.
  51. Lu, Z., Gu, D., Ding, H., Lacarbonara, W. and Chen, L. (2020), "Nonlinear vibration isolation via a circular ring", Mech. Syst. Signal. Proces., 136, 106490. https://doi.org/10.1016/j.ymssp.2019.106490.
  52. Li, R., Zheng, X., Yang, Y., Huang, M. and Huang, X. (2019), "Hamiltonian system-based new analytic free vibration solutions of cylindrical shell panels", Appl. Math. Modelling., 76, 900-917. https://doi.org/10.1016/j.apm.2019.07.020.
  53. Liu, Y., Wang, W., He, T., Moradi, Z. and Larco Benitez, M.A. (2021), "On the modelling of the vibration behaviors via discrete singular convolution method for a high-order sector annular system", Eng. Comput. https://doi.org/10.1007/s00366-021-01454-z.
  54. Ma, L., Liu, X. and Moradi, Z. (2022), "On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation", Eng. Comput. 38, 2583-2607. https://doi.org/10.1007/s00366-020-01210-9.
  55. Mohammad-Rezaei Bidgoli, E. and Arefi, M. (2021), "Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation", J. Sandw. Struct. Mater., 23(2), 436-472. https://doi.org/10.1177/1099636219839302.
  56. Mirjavadi, S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020), "Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite", Steel. Compos. Struct., 36(1), 63-74. https://doi.org/10.12989/scs.2020.36.1.063.
  57. Muhammad, I., Ali, A., Zhou, L., Zhang, W. and Wong, P.K.J. (2022), "Vacancy-engineered half-metallicity and magnetic anisotropy in CrSI semiconductor monolayer", J. Alloys. Compounds., 909, 164797. https://doi.org/10.1016/j.jallcom.2022.164797.
  58. Peng, Y., Shi, C., Zhu, Y., Gu, M. and Zhuang, S. (2020), "Terahertz spectroscopy in biomedical field: a review on signal-to-noise ratio improvement", PhotoniX 1, 12. https://doi.org/10.1186/s43074-020-00011-z.
  59. Pan, X., Wu, W., Yu, X., Lu, L., Guo, C. and Zhao, Y. (2023), "Typical electrical, mechanical, electromechanical characteristics of copper-encapsulated REBCO tapes after processing in temperature under 250 ℃", Superconductor. Sci. Techn. https://doi.org/1088/1361-6668/acb740. 1088/1361-6668/acb740
  60. Pourmoayed, A.R., Malekzadeh Fard, K. and Shahravi, M. (2017), "Vibration analysis of a cylindrical sandwich panel with flexible core using an improved higher-order theory", Lat. Am. J. Solids Struct. 14(4), https://doi.org/10.1590/1679-78253410.
  61. Redekop, D. and Makhoul, E. (2000), "Use of the differential quadrature method for the buckling analysis of cylindrical shell panels", Struct. Eng. Mech., 10(5), 451-462. https://doi.org/10.12989/sem.2000.10.5.45.
  62. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2011), "Application and analysis of functionally graded piezoelectrical rotating cylinder as mechanical sensor subjected to pressure and thermal loads", Appl. Math. Mech. (Eng. Ed.), 32(8), 997-1008. https://doi.org/10.1007/s10483-011-1475-6.
  63. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2012), "Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method", Mechanika, 18(3), 292-300. https://doi.org/10.5755/j01.mech.18.3.1875.
  64. Sharma, J.N., Pal, M. and Chand, D. (2004), "Three-dimensional vibration analysis of a piezothermoelastic cylindrical panel", Int. J. Eng. Sci., 42(15-16), 1655-1673. https://doi.org/10.1016/j.ijengsci.2004.01.006.
  65. Shaban, M. and Mazaheri, H. (2021), "Bending analysis of five-layer curved functionally graded sandwich panel in magnetic field: closed-form solution", Appl. Math. Mech. -Engl. Ed. 42, 251-274. https://doi.org/10.1007/s10483-021-2675-7.
  66. Shi, J., Zhao, B., He, T., Tu, L., Lu, X. and Xu, H. (2023), "Tribology and dynamic characteristics of textured journal-thrust coupled bearing considering thermal and pressure coupled effects", Trib. Int., 180, 108292. https://doi.org/10.1016/j.triboint.2023.108292.
  67. Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., AlZahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel. Compos. Struct. 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
  68. Twinkle, C.M., Nithun, C., Pitchaimani, J. and Rajamohan, V. (2021), "Modal analysis of cylindrical panels at elevated temperatures under nonuniform heating conditions: Experimental investigation", Proc. The. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., https://doi.org/10.1177/0954406220936738.
  69. Tian, L., Li, M., Li, L., Li, D. and Bai, C. (2023), "Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios", Thin. Wall. Struct., 182, 110219. https://doi.org/10.1016/j.tws.2022.110219.
  70. Wang, X. and Lyu, X. (2021), "Experimental study on vertical water entry of twin spheres side-by-side", Ocean. Eng., 221, 108508. https://doi.org/10.1016/j.oceaneng.2020.108508.
  71. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution, Compos. Struct., 275, 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  72. Xie, L., Zhu, Y., Yin, M., Wang, Z., Ou, D., Zheng, H. and Yin, G. (2022). "Self-feature-based point cloud registration method with a novel convolutional Siamese point net for optical measurement of blade profile", Mech. Syst. Signal. Proces., 178, 109243. https://doi.org/10.1016/j.ymssp.2022.109243.
  73. Xiao, X., Zhang, H., Li, Z., Chen, F. and Rasulo, A. (2022), "Effect of Temperature on the Fatigue Life Assessment of Suspension Bridge Steel Deck Welds under Dynamic Vehicle Loading", Math. Prob. Eng., 7034588. https://doi.org/10.1155/2022/7034588.
  74. Yu, X., Maalla, A. and Moradi, Z. (2022), "Electroelastic high-order computational continuum strategy for critical voltage and frequency of piezoelectric NEMS via modified multi-physical couple stress theory", Mech. Syst Signal. Proc., 165, 108373, https://doi.org/10.1016/j.ymssp.2021.108373.
  75. Yin, M., Zhu, Y., Yin, G., Fu, G. and Xie, L. (2022), "Deep feature interaction network for point cloud registration, with applications to optical measurement of blade profiles", IEEE. Trans. Indust. Inf. https://doi.org/10.1109/TII.2022.3220889.
  76. Yuan, Q., Kato, B., Fan, K. and Wang, Y. (2023), "Phased array guided wave propagation in curved plates", Mech. Syst. Signal. Proces., 185, 109821. https://doi.org/10.1016/j.ymssp.2022.109821
  77. Zhang, X.M., Liu, G.R. and Lam, K.Y. (2001), "Frequency analysis of cylindrical panels using a wave propagation approach", Appl. Acoust., 62(5), 527-543. https://doi.org/10.1016/S0003-682X(00)00059-1.
  78. Zhou, Y., Stanciulescu, I., Eason, T. and Spottswood, M. (2015), "Nonlinear elastic buckling and postbuckling analysis of cylindrical panels", Finite. Elem. Analysis. Design., 96, 41-50. https://doi.org/10.1016/j.finel.2014.12.001.
  79. Zheng, X., Ni, Z., Xu, D., Wang, Z., Liu, M., Li, Y., Du, J. and Li, R. (2021), "New analytic buckling solutions of non-Levy-type cylindrical panels within the symplectic framework", Appl. Math. Modelling., 98, 398-415. https://doi.org/10.1016/j.apm.2021.05.017.
  80. Zheng, X., Sun, Y., Huang, M., An, D., Li, P., Wang, B. and Li, R. (2019), "Symplectic superposition method-based new analytic bending solutions of cylindrical shell panels", Int. J. Mech. Sci., 152, 432-442. https://doi.org/10.1016/j.ijmecsci.2019.01.012.
  81. Zhou, C., Ni, Z., Zheng, X., Wang, B. and Li, R. (2022), "On new benchmark free vibration solutions of rectangular sandwich panels within the symplectic solution framework", J. Sandw. Struct. Mater., 1883-1904. https://doi.org/10.1177/10996362221106780.
  82. Zhao, Y., Moradi, Z., Davoudi, M. and Zhuang, J. (2022), "Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory", Eng. Comput. 38, 939-961. https://doi.org/10.1007/s00366-020-01242-1.
  83. Zhang, L., Chen, Z., Habibi, M., Ghabussi, A. and Alyous, R. (2021), "Low-velocity impact, resonance, and frequency responses of FG-GPLRC viscoelastic doubly curved panel", Compos. Struct., 269, 114000. https://doi.org/10.1016/j.compstruct.2021.114000.
  84. Zhang, Z., Du, M., Li, Y., Liu, W., Wu, H., Cui, L. and Li, M. (2022), "Effects of mooring configuration on the dynamic behavior of a TLP with tendon failure". Desalination. Water. Treat., 268, 215-228. https://doi.org/10.5004/dwt.2022.28692.
  85. Zhong, T., Wang, W., Lu, S., Dong, X. and Yang, B. (2022), "RMCHN: A Residual Modular Cascaded Heterogeneous Network for Noise Suppression in DAS-VSP Records", IEEE Geosci. Remote. Sensing. Let., 20. https://doi.org/10.1109/LGRS.2022.3229556.
  86. Zhang, L., Zhang, J., Wang, X., Tao, M., Dai, G., Wu, J. and Lin, X. (2022b), "Design of coherent wideband radiation process in a Nd3+-doped high entropy glass system", Light: Sci. Appl., 11(1), 181. https://doi.org/10.1038/s41377-022-00848-y.
  87. Zhao, R., Dai, H. and Yao, H. (2022), "Liquid-metal magnetic soft robot with reprogrammable magnetization and stiffness", IEEE. Robot. Autom. Let., 7(2), 4535-4541. https://doi.org/10.1109/LRA.2022.3151164.
  88. Zhang, H., Ouyang, Z., Li, L., Ma, W., Liu, Y., Chen, F. and Xiao, X. (2022c), "Numerical study on welding residual stress distribution of corrugated steel webs", Metals, 12(11), 1831. https://doi.org/10.3390/met12111831.
  89. Zhang, H., Li, L., Ma, W., Luo, Y., Li, Z. and Kuai, H. (2022d), "Effects of welding residual stresses on fatigue reliability assessment of a PC beam bridge with corrugated steel webs under dynamic vehicle loading", Structures, 45, 1561-1572 https://doi.org/10.1016/j.istruc.2022.09.094.