DOI QR코드

DOI QR Code

Effect of thickness stretching and multi-field loading on the results of sandwich piezoelectric/piezomagnetic MEMS

  • Xiaoping Zou (Sichuan Jinghengxin Construction Engineering Testing Co., Ltd) ;
  • Gongxing Yan (School of Intelligent Construction, Luzhou vocational and technical college) ;
  • Wangming Wu (Aneng Third Bureau Chengdu Engineering Quality Testing Co., Ltd) ;
  • Wenjie Yang (Sichuan Jinghengxin Construction Engineering Testing Co., Ltd) ;
  • Weiwei Shi (Aneng Third Bureau Chengdu Engineering Quality Testing Co., Ltd) ;
  • Yuhusun Sun (Aneng Third Bureau Chengdu Engineering Quality Testing Co., Ltd)
  • Received : 2022.09.17
  • Accepted : 2022.12.21
  • Published : 2023.02.25

Abstract

Bending static and stress investigation of a microplate of piezoelectric/piezomagnetic material subjected to combined multifield loading. Shear deformable as well as thickness stretched model is used for derivation of the kinematic relations. Multi field governing equations are derived analytically through principle of virtual work. the results are analytically obtained analytically including magnetic/electric potentials, displacement and stress components with variation in multifield loading parameters.

Keywords

Acknowledgement

This work was supported by Sichuan Province Luzhou city of Stars science and technology planning project(2022-GYF-6), scientific research and innovation team construction project of Luzhou vocational and Technical College (2021YJTD07).

References

  1. Arefi, M. and Zenkour, A.M. (2016), "A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermo-electric environment", J. Sandw. Struct. & Mater., 18(5), 624-651. https://doi.org/10.1177/1099636216652.
  2. Ait Atmane, H., Tounsi, A. and Bernard, F. (2017), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Design, 13(1), 71-84. https://doi.org/10.1007/s10999-015-9318-x.
  3. Ahmed Houari, M.S., Tounsi, A. and Anwar Beg, O. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci. 76, 102-111. https://doi.org/10.1016/j.ijmecsci.2013.09.004.
  4. Arefi, M. and Soltan Arani, A.H. (2020), "Nonlocal vibration analysis of the three-layered FG nanoplates subjected to applied electric potential considering thickness stretching effect", Proc. Inst. Mech. Eng., Part L: J. Mater.: Design Appl., 234(9), 1183-1202. https://doi.org/10.1177/1464420720928378
  5. Arefi, M. and Civalek, O. (2020), "Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory", Arch. Civil. Mech. Eng., 20(1), 1-17. https://doi.org/10.1007/s43452-020-00032-2.
  6. Abazid, M.A. and Sobhy, M. (2018), "Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory", Microsyst. Techn. 24, 1227-1245. https://doi.org/10.1007/s00542-017-3492-8.
  7. Al-Furjan, M.S.H., Xu, M.X., Farrokhian, A., Soleimani Jafari, G., Shen, X. and Kolahchi, R. (2022), "On wave propagation in piezoelectric-auxetic honeycomb-2D-FGM micro-sandwich beams based on modified couple stress and refined zigzag theories", Wave. Rand. Compl. Med., https://doi.org/10.1080/17455030.2022.2030499.
  8. Alkhedher, M. (2021), "Hygrothermal environment effect on the critical buckling load of FGP microbeams with initial curvature integrated by CNT-reinforced skins considering the influence of thickness stretching", Nanotechnol. Rev., 10(1), https://doi.org/10.1515/ntrev-2021-0076.
  9. Adda Bedia, E.A. and Mahmoud, S.R. (2020), "A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions", Steel. Compos. Struct. 36(3), 355-367. https://doi.org/10.12989/scs.2020.36.3.355.
  10. Arefi, M. and Rahimi, G.H. (2010), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays., 5(12), 1442-1454. https://doi.org/10.5897/SRE.9000953.
  11. Arefi, M. and Rahimi, G.H. (2014), "Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder", Smart Struct. Syst., 13(1), 1-24. https://doi.org/10.12989/sss.2014.13.1.001.
  12. Arefi, M. and Rahimi, G.H. (2012a), "Comprehensive thermoelastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory", Mechanika, 18(1), 5-13. https://doi.org/10.5755/j01.mech.18.1.1273.
  13. Arefi, M. and Rahimi, G.H. (2012b), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart. Struct. Syst., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127.
  14. Arefi, M. and Rahimi, G.H. (2012c), "Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity", Acta. Mech., 223(1), 63-79. https://doi.org/10.1007/s00707-011-0536-5.
  15. Arefi, M. (2013), "Nonlinear thermoelastic analysis of thick-walled functionally graded piezoelectric cylinder", Acta. Mech., 224(11), 2771-2783. https://doi.org/10.1007/s00707-013-0888-0.
  16. Arefi, M. (2014), "A complete set of equations for piezo-magnetoelastic analysis of a functionally graded thick shell of revolution", Lat. Amer. J. Solids. Struct., 11(11), 2073-2098. https://doi.org/10.1590/S1679-78252014001100009.
  17. Arefi, M., Mohammadi, M., Tabatabaeian, A., Dimitri, R. and Tornabene, F. (2018), "Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels", Steel. Compos. Struct., 27(4), 525-536. https://doi.org/10.12989/scs.2018.27.4.525.
  18. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phys. Sci., 6 (27), 6315-6322. https://doi.org/10.5897/IJPS10.597.
  19. Arefi, M. and Nahas, I. (2014), "Nonlinear electro thermo elastic analysis of a thick spherical functionally graded piezoelectric shell", Compos. Struct., 118, 510-518. https://doi.org/10.1016/j.compstruct.2014.08.002.
  20. Arefi, M., Kiani, M. and Zenkour, A.M. (2020), "Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezomagnetic face sheets resting on Pasternak's foundation via MCST", J. Sandw. Struct. Mater., 22(1), 55-86. https://doi.org/10.1177/1099636217734279.
  21. Arefi, M. and Rahimi, G.H. (2011), "Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart. Struct. Syst., 8(5), 433-447. https://doi.org/10.12989/sss.2011.8.5.433.
  22. Arefi, M., Bidgoli, E.M.-R., Dimitri, R., Tornabene, F. and Reddy, J.N. (2019), "Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on Pasternak foundations", Appl. Sci. (Switzerland), 9(8), 1580. https://doi.org/10.3390/app9081580.
  23. Arefi, M. and Zenkour, A.M. (2018), "Size-dependent electro-elastic analysis of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory", J. Intel. Mater. Syst. Struct., 29(7), 1394-1406. https://doi.org/10.1177/1045389X17733333.
  24. Arefi, M. and Zenkour, A.M. (2019), "Effect of thermo-magneto-electro-mechanical fields on the bending behaviors of a three-layered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater., 21(2), 639-669. https://doi.org/10.1177/1099636217697497.
  25. Arefi, M. and Zenkour A.M. (2017a), "Transient analysis of a three-layer microbeam subjected to electric potential", Int. J. Smart. Nano. Mater., 8(1), 20-40. https://doi.org/10.1080/19475411.2017.1292967.
  26. Arefi, M. and Zenkour, A.M. (2017b), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intel. Mater. Syst. Struct., 28(17), 2403-2413.https://doi.org/10.1177/1045389X17689930.
  27. Bhagat, S., Pitchaimani, J. and Murigendrappa, S.M. (2016), "Buckling and dynamic characteristics of a laminated cylindrical panel under non-uniform thermal load", Steel. Compos. Struct., 22(6), 1359-1389. https://doi.org/10.12989/scs.2016.22.6.1359.
  28. Biswal, M., Sahu, S.Kr., Asha, A.V. and Nanda, N. (2016), "Hygrothermal effects on buckling of composite shell-experimental and FEM results", Steel. Compos. Struct., 22(6), 1445-1463. https://doi.org/10.12989/scs.2016.22.6.1445.
  29. Babaei, H. and Eslami, M.R. (2019), "Nonlinear Snap-Through Instability of FGM Shallow Micro-Arches with Integrated Surface Piezoelectric Layers Based on Modified Couple Stress Theory", Int. J. Struct. Stab. Dyn., 19(08), 1950088. https://doi.org/10.1142/S0219455419500883.
  30. Babaei, H. and Eslami, M.R. (2019), "Thermally induced large deflection of FGM shallow micro-arches with integrated surface piezoelectric layers based on modified couple stress theory", Acta. Mech., 230, 2363-2384. https://doi.org/10.1007/s00707-019-02384-0.
  31. Chen, W.Q., Lu, C.F. and Bian, Z.G. (2004), "A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation", Appl. Math. Modelling, 28, 877-890. https://doi.org/10.1016/j.apm.2004.04.001.
  32. Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2021), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Method. Appl. Sci. https://doi.org/10.1002/mma.7069.
  33. Cui, X., Li, C., Zhang, Y., Said, Z., Debnath, S., Sharma, S. and Li, R. (2022a), "Grindability of titanium alloy using cryogenic nanolubricant minimum quantity lubrication", J. Manufact. Proc., 80, 273-286. https://doi.org/10.1016/j.jmapro.2022.06.003.
  34. Cai, X., Tang, R., Zhou, H., Li, Q., Ma, S., Wang, D. and Zhou, L. (2021), "Dynamically controlling terahertz wavefronts with cascaded metasurfaces", Adv. Photon., 3(3), 036003. https://doi.org/10.1117/1.AP.3.3.036003.
  35. Cui, X., Li, C., Zhang, Y., Ding, W., An, Q., Liu, B. and Debnath, S. (2022b), "A comparative assessment of force, temperature and wheel wear in sustainable grinding aerospace alloy using bio-lubricant", Front. Mech. Eng., 18(3), https://doi.org/10.1007/s11465-022-0719-x.
  36. Duan, Z., Li, C., Zhang, Y., Yang, M., Gao, T., Liu, X. and Sharma, S. (2022), "Mechanical behavior and Semiempirical force model of aerospace aluminum alloy milling using nano biological lubricant", Front. Mech. Eng., 12, 6-16. https://doi.org/10.1007/s11465-022-0720-4.
  37. Ebrahimi, F., Habibi, M. and Safarpour, H. (2019), "On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell", Eng. Comput., 35, 1375-1389. https://doi.org/10.1007/s00366-018-0669-4.
  38. Fan, T. (2021), "Energy harvesting from a nanopiezoelectric/piezomagnetic sandwich beam with porous properties", J. Sandw. Struct. & Mater., 23(7), 3280-3302. https://doi.org/10.1177/1099636220926.
  39. Garg, A., Chalak, H.D. Zenkour, A.M. Belarbi, M.O. and Houari, M.S.A (2022), "A Review of Available Theories and Methodologies for the Analysis of Nano Isotropic, Nano Functionally Graded, and CNT Reinforced Nanocomposite Structures", Arch. Comput. Meth. Eng., 29, 2237-2270. https://doi.org/10.1007/s11831-021-09652-0.
  40. Ganapathi, M., Patel, B.P. and Makhecha, D.P. (2004), "Nonlinear dynamic analysis of thick composite/sandwich laminates using an accurate higher-order theory", Compos. B: Eng., 35(4), 345-355. https://doi.org/10.1016/S1359-8368(02)00075-6.
  41. Guo, Y., Mia, H. and Habibi, M. (2021), "Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system", Mech. Syst. Signal. Proc., 157, 107723. https://doi.org/10.1016/j.ymssp.2021.107723.
  42. Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M., Hussain, M. and Mahmoud, S.R. (2021), "Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation", Steel. Compos. Struct., 38(1), 1-15. https://doi.org/10.12989/scs.2021.38.1.001.
  43. Gao, G., Sun, N., Shao, D., Tao, Y. and Wu, W. (2021), "A Unified Analysis for the Free Vibration of the Sandwich Piezoelectric Laminated Beam with General Boundary Conditions under the Thermal Environment", Shock. Vibr., 1328886. https://doi.org/10.1155/2021/1328886.
  44. Ghabussi, A., Ashrafi, N., Shavalipour, A., Hosseinpour, A., Habibi, M., Moayedi, H., Babaei, B. and Safarpour, H. (2021), "Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter", Mech. Based. Design. Struct. Mach., 49(5), 738-762. https://doi.org/10.1080/15397734.2019.1705166.
  45. Gao, T., Zhang, Y., Li, C., Wang, Y., Chen, Y., An, Q. and Sharma, S. (2022), "Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies", Front. Mech. Eng., 17(2), 24. https://doi.org/10.1007/s11465-022-0680-8.
  46. Hadji, L., Atmane, H.A., Tounsi, A., Mechab, I. and Adda Bedia, E. A. (2011), "Free vibration of functionally graded sandwich plates using four variable refined plate theory". Appl. Math. Mech., 32, 925-42. https://doi.org/10.1007/s10483-011-1470-9.
  47. Heidari, Y., Arefi, M. and Irani-Rahaghi, M. (2021), "Free vibration analysis of cylindrical micro/nano-shell reinforced with CNTRC patches", Int. J. Appl. Mech., 13(04), 2150040. https://doi.org/10.1142/S175882512150040X.
  48. Houari, M.S.A., Tounsi, A. and Anwar Beg, O. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 102-111. https://doi.org/10.1016/j.ijmecsci.2013.09.004.
  49. Hashemi, H.R., Alizadeh, A., Oyarhossein, M.A., Shavalipour, A., Makkiabadi, M. and Habibi, M. (2021), "Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructured", Waves. Rand. Complex. Media., 31(6) 1340-1366, https://doi.org/10.1080/17455030.2019.1662968.
  50. Isavand, S., Bodaghi, M., Shakeri, M. and Aghazadeh Mohandesi, J. (2015), "Dynamic response of functionally gradient austenitic-ferritic steel composite panels under thermo-mechanical loadings", Steel. Compos. Struct., 18(1), 1-28. https://doi.org/10.12989/scs.2015.18.1.001.
  51. Khoshgoftar, M. J., Rahimi, G.H. and Arefi, M. (2013), "Exact solution of functionally graded thick cylinder with finite length under longitudinally non-uniform pressure", Mech. Res. Com., 51, 61-66. https://doi.org/10.1016/j.mechrescom.2013.05.001.
  52. Kumar, R., Dey, T. and Panda, S.K. (2019), "Instability and vibration analyses of FG cylindrical panels under parabolic axial compressions", Steel. Compos. Struct., 31(2), 187-199. https://doi.org/10.12989/scs.2019.31.2.187.
  53. Jiao, F., Wei, P. and Li, L. (2017), "Wave propagation through an inhomogeneous slab sandwiched by the piezoelectric and the piezomagnetic half spaces", Ultrasonics, 73, 22-33. https://doi.org/10.1016/j.ultras.2016.08.015.
  54. Karami, B., Shahsavari, D., Li, L., Karami, M. and Janghorban, M. (2019), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 233(1), 287-301. https://doi.org/10.1177/0954406218756451.
  55. Kholdi, M., Rahimi, G., Loghman, A., Ashrafi, H. and Arefi, M. (2022), "Analysis of Thick-Walled Spherical Shells Subjected to Various Temperature Gradients: Thermo-Elasto-Plastic and Residual Stress Studies", Int. J. Appl. Mech., 13(9), 2150105. https://doi.org/10.1142/S1758825121501052.
  56. Eftekhari, S.A., Hashemian, M. and Toghraie, D. (2020), "Optimal vibration control of multi-layer micro-beams actuated by piezoelectric layer based on modified couple stress and surface stress elasticity theories", Phys. A: Statist. Mech. Appl., 546, 123998. https://doi.org/10.1016/j.physa.2019.123998.
  57. Liu, Z., Wu, Z., Zhou, J., Zhang, S. and Ren, X. (2022), "Transverse stretching vibration analysis of cross-ply composite and sandwich beams by means of an equivalent single-layer theory", Mech. Adv. Mater. Struct., https://doi.org/10.1080/15376494.2022.2073409.
  58. Li, H., Zhang, Y., Li, C., Zhou, Z., Nie, X., Chen, Y. and Sharma, S. (2022a), "Cutting fluid corrosion inhibitors from inorganic to organic: Progress and applications". Korean J. Chem. Eng., 39(5), https://doi.org/10.1007/s11814-021-1057-0.
  59. Liu, S., Song, Z., Liu, Y., Chen, Y. and Liu, C. (2022b), "Flux-Weakening Controller Design of Dual Three-phase PMSM Drive System with Copper Loss Minimization", IEEE. Trans. on Power. Elect., 38(2) 1-12. https://doi.org/10.1109/TPEL.2022.3216513.
  60. Li, Q., Cai, X., Liu, T., Jia, M., Wu, Q., Zhou, H. and Zhou, L. (2022), "Gate-tuned graphene meta-devices for dynamically controlling terahertz wavefronts", Nanophotonics., 11(9), 2085-2096. https://doi.org/10.1515/nanoph-2021-0801.
  61. Lu, S., Ban, Y., Zhang, X., Yang, B., Yin, L., Liu, S. and Zheng, W. (2022b), "Adaptive control of time delay teleoperation system with uncertain dynamics". Front. Neurobot. 16:928863. https://doi.org/10.3389/fnbot.2022.928863.
  62. Liu, S., Song, Z., Dong, Z., Liu, Y. and Liu, C. (2022a), "Generic Carrier-based PWM Solution for Series-end Winding PMSM Traction System with Adaptative Overmodulation Scheme", IEEE. Trans. Transp. Electrif., 1. https://doi.org/10.1109/TTE.2022.3193272.
  63. Lu, H., Zhu, Y., Yin, M., Yin, G. and Xie, L. (2022a), "Multimodal Fusion Convolutional Neural Network with Cross-Attention Mechanism for Internal Defect Detection of Magnetic Tile". IEEE Access, 10, 60876-60886. https://doi.org/10.1109/ACCESS.2022.3180725.
  64. Li, R., Du, Z., Qian, X., Li, Y., Martinez-Camarillo, J. C., Jiang, L. and Zhou, Q. (2021), "High resolution optical coherence elastography of retina under prosthetic electrode", Quant. Imaging. Med. Surg., 11(3), 918-927. https://doi.org/10.21037/qims-20-1137.
  65. Li, R., Qian, X., Gong, C., Zhang, J., Liu, Y., Xu, B. and Zhou, Q. (2022b), "Simultaneous Assessment of the Whole Eye Biomechanics Using Ultrasonic Elastography", IEEE Trans. Biomed. Eng., https://doi.org/10.1109/TBME.2022.3215498.
  66. Li, Z., Zhang, Q., Shen, H., Xiao, X., Kuai, H. and Zheng, J. (2023), "Buckling performance of the encased functionally graded porous composite liner with polyhedral shapes reinforced by graphene platelets under external pressure", Thin-Walled Struct, 183, 110370. https://doi.org/10.1016/j.tws.2022.110370.
  67. Mirjavadi, S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020), "Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite", Steel. Compos. Struct., 36(1), 63-74. https://doi.org/10.12989/scs.2020.36.1.063.
  68. Moradi-Dastjerdi, R. and Behdinan, K. (2021), "Free vibration response of smart sandwich plates with porous CNT-reinforced and piezoelectric layers", Appl. Math. Modelling, 96, 66-79. https://doi.org/10.1016/j.apm.2021.03.013.
  69. Merazka, B., Bouhadra, A., Menasria, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A. and Mohammad, M. (2021), "Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations", Steel. Compos. Struct., 39(5), 631-643. https://doi.org/10.12989/scs.2021.39.5.631.
  70. Menasria, A., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Shariati, A., Habibi, M. and Tounsi, A. (2021), "Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties", Eng. Comput., 37, 3629-3648. https://doi.org/10.1007/s00366-020-01024-9.
  71. Mohammad-Rezaei Bidgoli, E. and Arefi, M. (2021), "Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation", J. Sandw. Struct. Mater., 23(2), 436-472. https://doi.org/10.1177/1099636219839302.
  72. Nguyen, N.V., Nguyen-Xuan, H. and Lee, J. (2022), "A quasi-three-dimensional isogeometric model for porous sandwich functionally graded plates reinforced with graphene nanoplatelets", J. Sandw. Struct. Mater., 24(2), 825-859. https://doi.org/10.1177/10996362211020451.
  73. Redekop, D. and Makhoul, E. (2000), "Use of the differential quadrature method for the buckling analysis of cylindrical shell panels", Struct. Eng. Mech., 10(5), 451-462. https://doi.org/10.12989/sem.2000.10.5.451.
  74. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2011), "Application and analysis of functionally graded piezoelectrical rotating cylinder as mechanical sensor subjected to pressure and thermal loads", Appl. Math. Mech. (Eng. Ed.), 32(8), 997-1008. https://doi.org/10.1007/s10483-011-1475-6.
  75. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2012), "Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method", Mechanika, 18(3), 292-300. https://doi.org/10.5755/j01.mech.18.3.1875.
  76. Sobhy, M., Abazid, M. and Al Mukahal, A.F. (2021), "Electro-thermal buckling of FG graphene platelets-strengthened piezoelectric beams under humid conditions", Adv. Mech. Eng., 14(4), https://doi.org/10.1177/16878132221091005.
  77. Singhal, A., Baroi, J., Sultana, M. and Baby, R. (2022), "Analysis of SH-waves Propagating in Multiferroic Structure with Interfacial Imperfection", Mech. Adv. Compos. Struct., 9(1), 1-10. https://doi.org/10.22075/macs.2021.20627.1266.
  78. Sobhy, M. (2021), "Piezoelectric bending of GPL-reinforced annular and circular sandwich nanoplates with FG porous core integrated with sensor and actuator using DQM", Arch. Civil Mech. Eng., 21, 78. https://doi.org/10.1007/s43452-021-00231-5.
  79. Sobhy, M. (2021), "Analytical buckling temperature prediction of FG piezoelectric sandwich plates with lightweight core", Mater. Res. Exp., 8, 095704. https://orcid.org/0000-0002-5999-2169.
  80. Shao, Y., Zhao, Y., Gao, J. and Habibi, M. (2021), "Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force", Archiv. Civ. Mech. Eng., 21, 141. https://doi.org/10.1007/s43452-021-00279-3.
  81. Tang, H., Di, J., Wu, Z. and Li, W. (2022), "Temperature analysis for the asymmetric six-phase permanent magnet synchronous motor in healthy and fault-tolerant modes", IEEE. Trans. Indust. Elect., 1-12. https://doi.org/10.1109/TIE.2022.3199938.
  82. Tahir, S.I., Tounsi, A., Chikh, A., Al-Osta, M.A., Dulaijan, S.U. and Al-Zahrani, M.M. (2022), "The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT", Steel. Compos. Struct., 42(4), 501-511. https://doi.org/10.12989/scs.2022.42.4.501.
  83. Xue, Y. and Liu, J. (2010), "Decay rate of saint-venant end effects for plane deformations of piezoelectric-piezomagnetic sandwich structures", Acta. Mech. Solid. Sin., 23(5), 407-419. https://doi.org/10.1016/S0894-9166(10)60043-2.
  84. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 275, 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  85. Yan, Z. (2018), "Modeling of a piezoelectric/piezomagnetic nano energy harvester based on two dimensional theory", Smart. Mater. Struct., 27, 015016. https://orcid.org/0000-0002-0934-776X.
  86. Ying, J., Lu, C.F. and Chen, W.Q. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84, 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004.
  87. Yang, L., Huang, H., Xi, Z., Zheng, L., Xu, S., Tian, G. and Liu, G. (2022), "Simultaneously achieving giant piezoelectricity and record coercive field enhancement in relaxor-based ferroelectric crystals", Nature. Com., 13(1), 2444. https://doi.org/10.1038/s41467-022-29962-6.
  88. Yang, Y.Y., Gong, Y.D., Li, C.H., Wen, X.L. and Sun, J.Y. (2020), "Mechanical performance of 316L stainless steel by hybrid directed energy deposition and thermal milling process". J. Mater. Proces. Techn., 291, 117023. https://doi.org/10.1016/j.jmatprotec.2020.117023.
  89. Yang, M., Li, C., Zhang, Y., Jia, D., Zhang, X., Hou, Y. and Wang, J. (2017), "Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions", Int. J. Mach. Tool. Manufact., 122, 55-65. https://doi.org/10.1016/j.ijmachtools.2017.06.003.
  90. Yang, M., Li, C., Zhang, Y., Jia, D., Li, R., Hou, Y. and Wang, J. (2019). "Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions", Ceram. Int., 45(12), 14908-14920. https://doi.org/10.1016/j.ceramint.2019.04.226.
  91. Yin, M., Zhu, Y., Yin, G., Fu, G. and Xie, L. (2022), "Deep Feature Interaction Network for Point Cloud Registration, With Applications to Optical Measurement of Blade Profiles", IEEE. Trans. Indust. Inform., https://doi.org/10.1109/TII.2022.3220889.
  92. Wang, M., Jiang, C., Zhang, S., Song, X., Tang, Y. and Cheng, H. (2018), "Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage", Nature. Chem., 10(6), 667-672. https://doi.org/10.1038/s41557-018-0045-4.
  93. Wang, J., Tian, J., Zhang, X., Yang, B., Liu, S., Yin, L. and Zheng, W. (2022), "Control of time delay force feedback teleoperation system with finite time convergence", Front. Neurobot., https://doi.org/10.3389%2Ffnbot.2022.877069. https://doi.org/10.3389%2Ffnbot.2022.877069
  94. Wang, X., Li, C., Zhang, Y., Said, Z., Debnath, S., Sharma, S. and Gao, T. (2022a), "Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning", The. Int. J. Adv. Manufact. Techn., 119(1-2), 631-646. https://doi.org/10.1007/s00170-021-08235-4.
  95. Wang, X., Li, C., Zhang, Y., Ali, H. M., Sharma, S., Li, R. and Liu, X. (2022b), "Tribology of enhanced turning using biolubricants: A comparative assessment", Trib. Int., 107766. https://doi.org/10.1016/j.triboint.2022.107766.
  96. Xu, W., Li, C.H., Zhang, Y., Ali, H.M., Sharma, S., Li, R. and Zhou, Z. (2022). "Electrostatic atomization minimum quantity lubrication machining: from mechanism to application", Int. J. Extrem. Manuf. 4, 042003. https://doi.org/10.1088/2631-7990/ac9652.
  97. Xie, L., Zhu, Y., Yin, M., Wang, Z., Ou, D., Zheng, H. and Yin, G. (2022), "Self-feature-based point cloud registration method with a novel convolutional Siamese point net for optical measurement of blade profile", Mech. Syst. Signal. Proces., 178, 109243. https://doi.org/10.1016/j.ymssp.2022.109243.
  98. Zhang, J., Li, C., Zhang, Y., Yang, M., Jia, D., Liu, G. and Cao, H. (2018), Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air", J. Clean. Prod., 193, 236-248. https://doi.org/10.1016/j.jclepro.2018.05.009.
  99. Zhang, C., Eyvazian, A., Alkhedher, M., Alwetaishi, M. and Ahammad, N.A. (2022), "Modified couple stress theory application to analyze mechanical buckling behavior of three-layer rectangular microplates with honeycomb core and piezoelectric face sheets", Compos. Struct. 292, 115582. https://doi.org/10.1016/j.compstruct.2022.115582.
  100. Zhang, S.Q., Zhao, G.Z., Rao, M.N., Schmidt, R. and Yu, Y.J. (2020), "A review on modeling techniques of piezoelectric integrated plates and shells", J. Intel. Mater. Syst. Struct., 30(8), 1133-1147. https://doi.org/10.1177/1045389X19836169.
  101. Zhao, X., Liu, J.X., Qian, Z.H. and Gao, C.F. (2019), "Transient fracture of a piezoelectric-piezomagnetic sandwich structure: anti-plane case", Acta. Mech. 230, 1233-1246. https://doi.org/10.1007/s00707-017-2030-1.
  102. Zhang, Q., Xin, C., Shen, F., Gong, Y., Zi, Y., Guo, H. and Wang, Z.L. (2022a), "Human body IoT systems based on triboelectrification effect: energy harvesting, sensing, interfacing and communication", Energy. Env. Sci. https://doi.org/10.1039/D2EE01590K.
  103. Zhao, C., Xi, M., Huo, J. and He, C. (2021), "B-Doped 2D-InSe as a bifunctional catalyst for CO2/CH4 separation under the regulation of an external electric field", Phys. Chem. Chem. Phys.: PCCP, 23(40), 23219-23224. https://doi.org/10.1039/D1CP03943A.
  104. Zhang, Q., Liu, Z., Jiang, X., Peng, Y., Zhu, C. and Li, Z. (2022b), "Experimental investigation on performance improvement of cantilever piezoelectric energy harvesters via escapement mechanism from extremely Low-Frequency excitations", Sust. Energy. Techn. Assess., 53, 102591. https://doi.org/10.1016/j.seta.2022.102591.
  105. Zhang, X., Tang, Y., Zhang, F. and Lee, C. (2016). "A Novel Aluminum-Graphite Dual-Ion Battery", Adv. Energy. Mater., 6(11), 1502588. https://doi.org/10.1002/aenm.201502588.