DOI QR코드

DOI QR Code

Shape optimization of corner recessed square tall building employing surrogate modelling

  • Arghyadip Das (Civil Engineering Department, Indian Institute of Engineering Science and Technology) ;
  • Rajdip Paul (Civil Engineering Department, Indian Institute of Engineering Science and Technology) ;
  • Sujit Kumar Dalui (Civil Engineering Department, Indian Institute of Engineering Science and Technology)
  • Received : 2021.05.16
  • Accepted : 2023.02.10
  • Published : 2023.02.25

Abstract

The present study is performed to find the effect of corner recession on a square plan-shaped tall building. A series of numerical simulations have been carried out to find the two orthogonal wind force coefficients on various model configurations using Computational Fluid Dynamics (CFD). Numerical analyses are performed by using ANSYS-CFX (k-ℇ turbulence model) considering the length scale of 1:300. The study is performed for 0° to 360° wind angle of attack. The CFD data thus generated is utilised to fit parametric equations to predict alongwind and crosswind force coefficients, Cfx and Cfy. The precision of the parametric equations is validated by employing a wind tunnel study for the 40% corner recession model, and an excellent match is observed. Upon satisfactory validation, the parametric equations are further used to carry out multiobjective optimization considering two orthogonal force coefficients. Pareto optimal design results are presented to propose suitable percentages of corner recession for the study building. The optimization is based on reducing the alongwind and crosswind forces simultaneously to enhance the aerodynamic performance of the building.

Keywords

References

  1. ASCE 7-16 (2016), Minimum Design Loads for Buildings and Other Structures, Structural Engineering Institute of the American Society of Civil Engineering, Reston.
  2. AS/NZS 1180.2 (2011), Structure Design Actions, Part - 2: Wind Actions, Australian/ New Zealand Standard; Sydney and Wellington.
  3. Bernardini, E., Spence, S., Wei, D. and Kareem, A. (2015), "Aerodynamic shape optimization of civil structures: a CFD-enabled kriging-based approach", J. Wind Eng. Indust. Aero., 144, 154-164. https://doi.org/10.1016/j.jweia.2015.03.011.
  4. Bhatnagar, N.K., Gupta, P.K. and Ahuja, A.K. (2012), "Wind pressure distribution on Low -Rise building with Saw- Tooth Roof", IV National Conference Wind Engineering.
  5. Chakraborty, S., Dalui, S.K. and Ahuja, A.K. (2014), "Wind load on irregular plan shaped tall building- A case study". Wind Struct., 19(1), 59-73. http://dx.doi.org/10.12989/was.2014.19.1.059.
  6. Daemei, A.B. and Eghbali, S.R. (2019), "Study on aerodynamic shape Optimization of tall buildings using architectural modifications in order to reduce wake region", Wind Struct., 29(2), 139-147. http://doi.org/10.12989/was.2019.29.2.147.
  7. Elshaer, A., Bitsuamlak, G. and Damatty, A. El. (2015), "Aerodynamic shape Optimization for corners of tall buildings using CFD", 14th International Conference on Wind Engineering (ICWE): At Porto Alegre, Brazil.
  8. Elshaer, A., Bitsuamlak, G. and Damatty, A. El. (2016), "Aerodynamic shape Optimization of tall buildings using twisting and corner modifications", 8th International Colloquium on Bluff Body Aerodynamics and Applications, Northeastern University, Boston, Massachusetts, USA.
  9. Elshaer, A., Bitsuamlak, G., Damatty, A. El. (2017), "Enhancing wind performance of tall buildings using corner aerodynamic optimization", Eng. Struct., 136, 133-148. https://doi.org/10.1016/j.engstruct.2017.01.019.
  10. Elshaer, A. and Bitsuamlak, G. (2018), "Multiobjective Aerodynamic Optimization of Tall Building Openings for Wind-Induced Load Reduction", J. Struct. Eng., 144(10). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002199.
  11. Franke, J., Hirsch, C., Jensen, A.G., Krus, H.W., Schatzmann, M., Westbury, P.S., Miles, S.D., Wisse, J.A. and Wright, N.G. (2004), "Recommendations on the use of CFD in wind engineering", International Conference on Urban Wind Engineering and Building Aerodynamics: COST C14: Impact of Wind and Storm on City Life and Built Environment.
  12. Fu, J.Y., Li, Q.S., Wu, J.R., Xiao, Y.Q. and Song, L.L. (2008), "Field measurements of boundary layer wind characteristics and wind-induced responses of super-tall buildings", J. Wind Eng. Indust. Aero., 96(8-9), 1332-1358. https://doi.org/10.1016/j.jweia.2008.03.004.
  13. Gomes, M., Rodrigues, A. and Mendes, P. (2005), "Experimental and numerical study of wind pressures on irregular-plan shapes", J. Wind Eng. Indust. Aero., 93(10), 741-756. https://doi.org/10.1016/j.jweia.2005.08.008.
  14. Irwin, A. (2007), "Bluff body aerodynamics in wind engineering", J. Wind Eng. Indust. Aero., 96(6-7), 701-712. https://doi.org/10.1016/j.jweia.2007.06.008.
  15. Irwin, A. (2009), "Wind engineering challenges of the new generation of super-tall buildings", J. Wind Eng. Ind., Aero., 97(7-8), 328-334. https://doi.org/10.1016/j.jweia.2009.05.001.
  16. IS 875 Part - III (2015), "Indian standard code of practice for design loads (other than earthquake) for buildings and structures, Part 3 (wind loads)", Bureau of Indian Standards, New Delhi, India, 2015.
  17. Kareem, A., Spence, S., Bernardini, E., Bobby, S. and Wei, D. (2013), "Using computational fluid dynamics to optimized tall building design", CTBUH J., Issue III, 38-43. https://doi.org/10.14774/JKIID.2013.22.1.038
  18. Kumar, D. and Dalui, S.K. (2017), "Effect of internal angles between limbs of cross plan shaped tall building under wind load", Wind Struct., 24(2), 95-118. https://doi.org/10.12989/was.2017.24.2.095.
  19. Lam K.M. and Zhao J.G. (2006), "Interference effects of wind loads on a row of tall buildings", The Fourth International Symposium on Computational Wind Engineering (CWE2006), 817-820. Yokohama.
  20. Li, Y., Tian, X., Tee, K.F, Li, Q.S. and Li, Y.G, (2018), "Aerodynamic treatments for reduction of wind loads on High-rise Building", J. Wind Eng. Ind., Aero., 172, 107-115. https://doi.org/10.1016/j.jweia.2017.11.006.
  21. Liang, S., Li, Q.S., Lui, S., Zhang, L. and Gu, M. (2004), "Torsional dynamic wind loads on rectangular tall buildings", Eng. Struct., 26(1), 129-137. https://doi.org/10.1016/j.engstruct.2003.09.004.
  22. Lin, N., Letchford, C., Tamura, Y. and Liang, B. (2004), "Characteristics of Wind Forces Acting on Tall Buildings", J. Wind Eng. Indust. Aero., 93(3), 217-242. https://doi.org/10.1016/j.jweia.2004.12.001.
  23. MATLAB (2016a), The MathWorks, Inc., Natick, Massachusetts, United States.
  24. Muehleisen, R.T. and Patrizi, S. (2013), "A new parametric equations for the wind pressure coefficient for low-rise buildings", Energy Build., 57, 245-249. https://doi.org/10.1016/j.enbuild.2012.10.051.
  25. Paul, R. and Dalui, S.K. (2016), "Wind effects on 'Z' plan shaped tall building: a case study," Int. J. Adv. Struct. Eng., 8(3), 319-335. https://doi.org/10.1007/s40091-016-0134-9.
  26. Paul, R. and Dalui, S.K. (2020), "Optimization of alongwind and crosswind force coefficients on a tall building with horizontal limbs using surrogate modeling", Struct. Des. Tall Spec. Build., https://doi.org/10.1002/tal.1830.
  27. Paul, R. and Dalui, S.K. (2020), "Shape optimization to reduce wind pressure on the surfaces of a rectangular building with horizontal limbs", Periodica Polytechnica Civil Eng., 65(1), 134-149. https://doi.org/10.3311/PPci.16888.
  28. Revuz, J., Hargreaves, D.M. and Owen, J.S. (2012), "On the domain size of steady state CFD modelling of tall building", Wind Struct., 15(4), 313-329. https://doi.org/10.12989/was.2012.15.4.313.
  29. Sanyal, P. and Dalui, S.K. (2018), "Effect of courtyard and opening on a rectangular plan shaped tall building under wind load.", Int. J. Adv. Struct. Eng., 10(2), 169-188. https://doi.org/10.1007/s40091-018-0190-4.
  30. TableCurve 3D V4.0 (2002), Systat Software Inc.,
  31. Tominaga, Y. and Stathopoulos, T. (2012), "CFD Modelling of Pollution Dispersion in Building Array: Evaluation of turbulent scalar flux modelling in RANS model using LES results", J. Wind Eng. Indust. Aero., 104-106(May-July), 484-491. https://doi.org/10.1016/j.jweia.2012.02.004.
  32. Tanaka, H., Tamura, Y., Ohtake, K., Nakai, M. and Kim, Y.C. (2012), "Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations", J. Wind Eng. Indust. Aero., 107-108, 179-191. https://doi.org/10.1016/j.jweia.2012.04.014.
  33. Tse, K.T., Hitchcock, P.A., Kwok, K.C.S., Thepmongkorn, S. and Chan, C.M. (2009), "Economic perspectives of aerodynamic treatments of square tall buildings", J. Wind Eng. Indust. Aero., 97(9), 455-467. https://doi.org/10.1016/j.jweia.2009.07.005.
  34. Verma, S.K., Ahuja, A.K. and Pandey, A.D. (2013), "Effects of wind incidence angle on wind pressure distribution on square pan tall buildings", J. Academic Indust. Res., 1(12), 747-752.
  35. Xie, J. (2012), "Aerodynamic optimization in super-tall building designs", The Seventh International Colloquium on Bluff Body Aerodynamics and its Applications (BBAA7) Shanghai, China.
  36. Xin, Q. (2011), Diesel Engine System Design. Sawston. Cambridge. Woodhead Publishing in Mechanical Engineering.
  37. Zhang, A. and Gu, M. (2008), "Wind tunnel tests and numerical simulations of wind pressures on buildings in staggered arrangement", J. Wind Eng. Indust. Aero., 96(10-11), 2067-2079. https://doi.org/10.1016/j.jweia.2008.02.013.