Acknowledgement
The research described in this paper was financially supported by the National Natural Science Foundation of China (52078221). The support for the research acknowledged with thanks.
References
- Ashasi-Sorkhabi, A., Malekghasemi, H., Ghaemmaghami, A.R. and Mercan, O. (2017), "Experimental investigations of tuned liquid damper-structure interactions in resonance considering multiple parameters", J. Sound, Vib., 388, 141-153. https://doi.org/10.1016/j.jsv.2016.10.036.
- Bigdeli, Y. and Kim, D. (2016), "Damping effects of the passive control devices on structural vibration control: TMD, TLC and TLCD for varying total masses", KSCE J. Civil Eng., 20(1), 301-308. https://doi.org/10.1007/s12205-015-0365-5.
- Cammelli, S., Li, Y.F. and Mijorski, S. (2016), "Mitigation of wind-induced accelerations using Tuned Liquid Column Dampers: Experimental and numerical studies", J. Wind Eng. Ind., Aerod., 155, 174-181. https://doi.org/10.1016/j.jweia.2016.06.002.
- Cavalagli, N., Biscarini, C., Facci, A.L., Ubertini, F. and Ubertini, S. (2017), "Experimental and numerical analysis of energy dissipation in a sloshing absorber", J. Fluids Struct., 68, 466-481. https://doi.org/10.1016/j.jfluidstructs.2016.11.020.
- Chang, C.C. and Gu, M. (1999), "Suppression of vortex-excited vibration of tall buildings using tuned liquid dampers", J. Wind Eng. Ind., Aerod., 83, 225-237. https://doi.org/10.1016/S0167-6105(99)00074-4.
- Chang, C.H. (2011), "Computational fluid dynamics simulation for tuned liquid column dampers in horizontal motion", Wind Struct., 14(5), 435-447. https://doi.org/10.12989/was.2011.14.5.435.
- Chen, B.F., Yang, H.K., Wu, C.H., Lee, T.C. and Chen, B. (2018), "Numerical study of liquid mixing in microalgae-farming tanks with baffles", Ocean Eng., 161, 168-186. https://doi.org/10.1016/j.oceaneng.2018.04.088.
- Faltinsen, O.M., Rognebakke, O.F., Lukovsky, I.A. and Timokha, A.N. (2000), "Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth", J. Fluid Mech., 407, 201-234. https://doi.org/10.1017/S0022112099007569.
- Fu, J.Y., Li, Q.S., Wu, J.R., Xiao, Y.Q. and Song, L.L. (2008), "Field measurements of boundary layer wind characteristics and wind-induced responses of super-tall buildings", J. Wind Eng. Ind. Aerod., 96(8-9), 1332-1358. https://doi.org/10.1016/j.jweia.2008.03.004.
- Ghaemmaghami, A., Kianoush, R. and Yuan, X.X. (2013), "Numerical modeling of dynamic behavior of annular tuned liquid dampers for applications in wind towers", Comput. Aided Civil Infrastruct. Eng., 28(1), 38-51. https://doi.org/10.1111/j.1467-8667.2012.00772.x.
- Goudarzi, M.A., Sabbagh-Yazdi, SR. and Marx, W. (2010), "Investigation of sloshing damping in baffled rectangular tanks subjected to the dynamic excitation", Bull. Earthq. Eng., 8(4), 1055-1072. https://doi.org/10.1007/s10518-009-9168-8.
- Ha, M. and Cheong, C. (2016), "Pitch motion mitigation of spar-type floating substructure for offshore wind turbine using multilayer tuned liquid damper", Ocean Eng., 116, 157-164. https://doi.org/10.1016/j.oceaneng.2016.02.036.
- Hamelin J.A., Love, J.S., Tait, M.J. and Wilson, J.C. (2013), "Tuned liquid dampers with a Keulegan-Carpenter number-dependent screen drag coefficient", J. Fluids Struct., 43, 271-286. https://doi.org/10.1016/j.jfluidstructs.2013.09.006.
- Heo, J.S., Lee, S.K., Park, E.C., Lee, S.H., Min, K.W., Kim, H.J., Jo, J.S. and Cho, B.H. (2009), "Performance test of a tuned liquid mass damper for reducing bidirectional responses of building structures", Struct. Des. Tall Spec. Build., 18(7), 789-805. https://doi.org/10.1002/tal.486.
- Irwin, P., Kilpatrick J., Robinson J. and Frisque A. (2008), "Wind and tall buildings: Negatives and positives", Struct. Des. Tall Spec. Build., 17(5), 915-928. https://doi.org/10.1002/tal.482.
- Isaacson, M. and Premasiri, S. (2001), "Hydrodynamic damping due to baffles in a rectangular tank", Canadian J. Civil Eng., 28(4), 608-616. https://doi.org/10.1139/cjce-28-4-608.
- Kashani, A.H., Halabian, A.M. and Asghari, K. (2018), "A numerical study of tuned liquid damper based on incompressible SPH method combined with TMD analogy", J. Fluids Struct., 82, 394-411. https://doi.org/10.1016/j.jfluidstructs.2018.07.013.
- Kim, Y.M., You, K.P., Ko, N.H. and Yoon, S.W. (2006), "Use of TLD and MTLD for control of wind-induced vibration of tall buildings", J. Mech. Sci. Technol., 20(9), 1346-1354. https://doi.org/10.1007/BF02915957.
- Konar T. and Ghosh A.D. (2021), "Flow damping devices in tuned liquid damper for structural vibration control: A review", Archiv. Comput. Methods Eng., 28(4), 2195-2207. https://doi.org/10.1007/s11831-020-09450-0.
- Lee, S.K., Park, E.C., Min, K.W., Lee, S.H., Chung, L. and Park, J.H. (2007), "Real-time hybrid shaking table testing method for the performance evaluation of a tuned liquid damper controlling seismic response of building structures", J. Sound Vib., 302(3), 596-612. https://doi.org/10.1016/j.jsv.2006.12.006.
- Li, Y.F., Li, S.Y., Sun, B.S., Liu, M. and Chen, Z.Q. (2021a), "Effectiveness of a tiny tuned liquid damper on mitigating wind-induced responses of cylindrical solar tower based on elastic wind tunnel tests", J. Wind Eng. Ind. Aerod., 208, 104455. https://doi.org/10.1016/j.jweia.2020.104455.
- Li, Y.H., Li, A.Q. and Deng, Y. (2021b), "Performance investigation of circular TLD devices used in wind turbine generation tower via both experiment and numerical simulation", J. Vib. Eng. Technol., 9(7), 1715-1732. https://doi.org/10.1007/s42417-021-00323-9.
- Love, J.S., Haskett, T.C. and Morava, B. (2018), "Effectiveness of dynamic vibration absorbers implemented in tall buildings", Eng. Struct., 176, 776-784. https://doi.org/10.1016/j.engstruct.2018.09.050.
- Malekghasemi, H., Ashasi-Sorkhabi, A., Ghaemmaghami, A.R. and Mercan, O. (2015), "Experimental and numerical investigations of the dynamic interaction of tuned liquid damper-structure systems", J. Vib. Control, 21(14), 2707-2720. https://doi.org/10.1177/1077546313514759.
- Marivani, M. and Hamed, M.S. (2014), "Numerical study of slat screen pattern effect on design parameters of tuned liquid dampers", J. Fluids Eng.-Transactions of the ASME, 136(6), 682-694. https://doi.org/10.1115/1.4026662.
- Marivani, M. and Hamed, M.S. (2017), "Evaluate pressure drop of slat screen in an oscillating fluid in a tuned liquid damper", Comput. Fluids, 156, 384-401. https://doi.org/10.1016/j.compfluid.2017.08.008.
- Rezaee, M. and Aly, A.M. (2016), "Vibration control in wind turbines for performance enhancement: A comparative study", Wind Struct., 22(1), 107-131. https://doi.org/10.12989/was.2016.22.1.107.
- Ross, A.S., El Damatty, A.A. and El Ansary, A.M. (2015), "Application of tuned liquid dampers in controlling the torsional vibration of high rise buildings", Wind Struct., 21(5), 537-564. https://doi.org/10.12989/was.2015.21.5.000.
- Sun, L.M., Fujino, Y., Pacheco, B.M. and Chaiseri, P. (1992), "Modelling of tuned liquid damper (TLD)", J. Wind Eng. Ind. Aerod., 43(1-3), 1883-1894. https://doi.org/10.1016/0167-6105(92)90609-E.
- Suthar, S.J. and Jangid, R.S. (2021), "Design of tuned liquid sloshing dampers using nonlinear constraint optimization for across-wind response control of benchmark tall building", Struct., 33, 2675-2688. https://doi.org/10.1016/j.istruc.2021.05.059.
- Suthar, S.J. and Jangid, R.S. (2022), "Multiple tuned liquid sloshing dampers for across-wind response control of benchmark tall building", Innov. Infrastruct. Solut., 7, 55. https://doi.org/10.1007/s41062-021-00650-6.
- Tait, M.J. (2008), "Modelling and preliminary design of a structure-TLD system", Eng. Struct, 30(10), 2644-2655. https://doi.org/10.1016/j.engstruct.2008.02.017.
- Tait, M.J., El Damatty, A.A., Isyumov, N. and Siddique, M.R. (2005), "Numerical flow models to simulate tuned liquid dampers (TLD) with slat screens", J. Fluids Struct., 20(8), 1007-1023. https://doi.org/10.1016/j.jfluidstructs.2005.04.004.
- Tait, M.J., Isyumov, N. and El Damatty, A.A. (2004a), "The efficiency and robustness of a uni-directional tuned liquid damper and modelling with an equivalent TMD", Wind Struct., 7(4), 235-250. https://doi.org/10.12989/was.2004.7.4.235.
- Tamura, Y. and Suganuma, S.Y. (1996), "Evaluation of amplitude-dependent damping and natural frequency of buildings during strong winds", J. Wind Eng. Ind. Aerod., 59, 115-130. https://doi.org/10.1016/0167-6105(96)00003-7.
- Tang, Z.Y., Dong, Y., Liu, H. and Li, Z.B. (2022), "Frequency domain analysis method of tuned liquid damper controlled multi-degree of freedoms system subject to earthquake excitation", J. Build. Eng., 48, 103910. https://doi.org/10.1016/j.jobe.2021.103910.
- Tarpo, M., Georgakis, C., Brandt, A. and Brincker, R. (2020), "Experimental determination of structural damping of a full-scale building with and without tuned liquid dampers", Struct. Control Health Monit., 28(3), e2676. https://doi.org/10.1002/stc.2676.
- Tuong B.P.D. and Huynh P.D. (2020), "Experimental test and numerical analysis of a structure equipped with a Multi-Tuned liquid damper subjected to dynamic loading", Int. J. Struct. Stabil. Dyn., 20(7), 2050075. https://doi.org/10.1142/S0219455420500753.
- Wang, J.T., Gui, Y., Zhu, F., Jin, F. and Zhou, M.X. (2016), "Real-time hybrid simulation of multi-story structures installed with tuned liquid damper", Struct. Control Health Monitor., 23(7), 1015-1031. https://doi.org/10.1002/stc.1822.
- Warnitchai, P. and Pinkaew, T. (1998), "Modelling of liquid sloshing in rectangular tanks with flow-dampening devices", Eng. Struct., 20(7), 593-600. https://doi.org/10.1016/S0141-0296(97)00068-0.
- Wu, J.R., Zhong, W.K., Fu, J.Y., Ng, C.T., Sun L.Y. and Huang, P. (2021), "Investigation on the damping of rectangular water tank with bottom-mounted vertical baffles: Hydrodynamic interaction and frequency reduction effect", Eng. Struct., 245, 112815. https://doi.org/10.1016/j.engstruct.2021.112815.
- Zahrai, S.M., Abbasi, S., Samali, B. and Vrcelj, Z. (2012), "Experimental investigation of utilizing TLD with baffles in a scaled down 5-story benchmark building", J. Fluids Struct., 28, 194-210. https://doi.org/10.1016/j.jfluidstructs.2011.08.016.
- Zhang, L.F., Zhang, L.L., Xie, Z.N. and Jiang, Y. (2022), "Experimental study on vibration reduction performance of tuned liquid dampers with damping screens", J. Vib. Eng., 35(3), 674-680. http://kns.cnki.net/kcms/detail/32.1349.TB.20210616.1507.002. 10616.1507.002
- Zhang, L.L., Hu, X.Q, Xie, Z.N., Shi, B.Q. Zhang, L. and Wang, R.H. (2020), "Field measurement study on time-varying characteristics of modal parameters of super high-rise buildings during super typhoon", J. Wind Eng. Indust. Aero., 200, 104139. https://doi.org/10.1016/j.jweia.2020.104139.
- Zhu, F., Wang, J.T., Jin, F., Lu, L.Q., Gui, Y. and Zhou, M.X. (2017), "Real-time hybrid simulation of the size effect of tuned liquid dampers", Struct. Control Health Monitor., 24(9), e1962. https://doi.org/10.1002/stc.1962.
- ANSYS Inc. (2019), ANSYS 19.2, ANSYS, Canonsburg, PA, USA
- Tait, M.J. (2004b), The Performance of 1-D and 2-D Tuned Liquid Dampers, Ph.D. Dissertation; University of Western Ontario, London, Canada.
- GB50009-2012 (2012), Load Code for the Design of Building Structures, Architectural Industry Press of China; Beijing, China.
- JGJ 3-2010 (2010), Technical Specification for Concrete Structures of Tall Building, Architectural Industry Press of China; Beijing, China.