DOI QR코드

DOI QR Code

Vibration control in high-rise buildings with tuned liquid dampers - Numerical simulation and engineering applications

  • Zijie Zhou (State Key Laboratory of Subtropical Building Science, South China University of Technology) ;
  • Zhuangning Xie (State Key Laboratory of Subtropical Building Science, South China University of Technology) ;
  • Lele Zhang (State Key Laboratory of Subtropical Building Science, South China University of Technology)
  • 투고 : 2022.10.25
  • 심사 : 2023.02.14
  • 발행 : 2023.02.25

초록

Tuned liquid dampers (TLDs) are increasingly being used as efficient dynamic vibration absorbers to mitigate wind-induced vibration in super high-rise buildings. However, the damping characteristics of screens and the control effectiveness of actual structures must be investigated to improve the reliability of TLDs in engineering applications. In this study, a numerical TLD model is developed using computational fluid dynamics (CFD) and a simulation method for achieving the coupled vibration of the structure and TLD is proposed. The numerical results are verified using shaking table tests, and the effects of the solidity ratio and screen position on the TLD damping ratios are investigated. The TLD control effectiveness is obtained by simulating the wind-induced vibration response of a full-scale structure-TLD system to determine the optimal screen solidity ratio. The effects of the structural frequency, damping ratio, and wind load amplitude on the TLD performance are further analyzed. The TLD damping ratio increases nonlinearly with the solidity ratio, and it increases with the screens towards the tank center and then decreases slightly owing to the hydrodynamic interaction between screens. Full-scale coupled simulations demonstrated that the optimal TLD control effectiveness was achieved when the solidity ratio was 0.46. In addition, structural frequency shifts can significantly weaken the TLD performance. The control effectiveness decreases with an increase in the structural damping ratio, and is insensitive to the wind load amplitude within a certain range, implying that the TLD has a stable damping performance over a range of wind speed variations.

키워드

과제정보

The research described in this paper was financially supported by the National Natural Science Foundation of China (52078221). The support for the research acknowledged with thanks.

참고문헌

  1. Ashasi-Sorkhabi, A., Malekghasemi, H., Ghaemmaghami, A.R. and Mercan, O. (2017), "Experimental investigations of tuned liquid damper-structure interactions in resonance considering multiple parameters", J. Sound, Vib., 388, 141-153. https://doi.org/10.1016/j.jsv.2016.10.036.
  2. Bigdeli, Y. and Kim, D. (2016), "Damping effects of the passive control devices on structural vibration control: TMD, TLC and TLCD for varying total masses", KSCE J. Civil Eng., 20(1), 301-308. https://doi.org/10.1007/s12205-015-0365-5.
  3. Cammelli, S., Li, Y.F. and Mijorski, S. (2016), "Mitigation of wind-induced accelerations using Tuned Liquid Column Dampers: Experimental and numerical studies", J. Wind Eng. Ind., Aerod., 155, 174-181. https://doi.org/10.1016/j.jweia.2016.06.002.
  4. Cavalagli, N., Biscarini, C., Facci, A.L., Ubertini, F. and Ubertini, S. (2017), "Experimental and numerical analysis of energy dissipation in a sloshing absorber", J. Fluids Struct., 68, 466-481. https://doi.org/10.1016/j.jfluidstructs.2016.11.020.
  5. Chang, C.C. and Gu, M. (1999), "Suppression of vortex-excited vibration of tall buildings using tuned liquid dampers", J. Wind Eng. Ind., Aerod., 83, 225-237. https://doi.org/10.1016/S0167-6105(99)00074-4.
  6. Chang, C.H. (2011), "Computational fluid dynamics simulation for tuned liquid column dampers in horizontal motion", Wind Struct., 14(5), 435-447. https://doi.org/10.12989/was.2011.14.5.435.
  7. Chen, B.F., Yang, H.K., Wu, C.H., Lee, T.C. and Chen, B. (2018), "Numerical study of liquid mixing in microalgae-farming tanks with baffles", Ocean Eng., 161, 168-186. https://doi.org/10.1016/j.oceaneng.2018.04.088.
  8. Faltinsen, O.M., Rognebakke, O.F., Lukovsky, I.A. and Timokha, A.N. (2000), "Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth", J. Fluid Mech., 407, 201-234. https://doi.org/10.1017/S0022112099007569.
  9. Fu, J.Y., Li, Q.S., Wu, J.R., Xiao, Y.Q. and Song, L.L. (2008), "Field measurements of boundary layer wind characteristics and wind-induced responses of super-tall buildings", J. Wind Eng. Ind. Aerod., 96(8-9), 1332-1358. https://doi.org/10.1016/j.jweia.2008.03.004.
  10. Ghaemmaghami, A., Kianoush, R. and Yuan, X.X. (2013), "Numerical modeling of dynamic behavior of annular tuned liquid dampers for applications in wind towers", Comput. Aided Civil Infrastruct. Eng., 28(1), 38-51. https://doi.org/10.1111/j.1467-8667.2012.00772.x.
  11. Goudarzi, M.A., Sabbagh-Yazdi, SR. and Marx, W. (2010), "Investigation of sloshing damping in baffled rectangular tanks subjected to the dynamic excitation", Bull. Earthq. Eng., 8(4), 1055-1072. https://doi.org/10.1007/s10518-009-9168-8.
  12. Ha, M. and Cheong, C. (2016), "Pitch motion mitigation of spar-type floating substructure for offshore wind turbine using multilayer tuned liquid damper", Ocean Eng., 116, 157-164. https://doi.org/10.1016/j.oceaneng.2016.02.036.
  13. Hamelin J.A., Love, J.S., Tait, M.J. and Wilson, J.C. (2013), "Tuned liquid dampers with a Keulegan-Carpenter number-dependent screen drag coefficient", J. Fluids Struct., 43, 271-286. https://doi.org/10.1016/j.jfluidstructs.2013.09.006.
  14. Heo, J.S., Lee, S.K., Park, E.C., Lee, S.H., Min, K.W., Kim, H.J., Jo, J.S. and Cho, B.H. (2009), "Performance test of a tuned liquid mass damper for reducing bidirectional responses of building structures", Struct. Des. Tall Spec. Build., 18(7), 789-805. https://doi.org/10.1002/tal.486.
  15. Irwin, P., Kilpatrick J., Robinson J. and Frisque A. (2008), "Wind and tall buildings: Negatives and positives", Struct. Des. Tall Spec. Build., 17(5), 915-928. https://doi.org/10.1002/tal.482.
  16. Isaacson, M. and Premasiri, S. (2001), "Hydrodynamic damping due to baffles in a rectangular tank", Canadian J. Civil Eng., 28(4), 608-616. https://doi.org/10.1139/cjce-28-4-608.
  17. Kashani, A.H., Halabian, A.M. and Asghari, K. (2018), "A numerical study of tuned liquid damper based on incompressible SPH method combined with TMD analogy", J. Fluids Struct., 82, 394-411. https://doi.org/10.1016/j.jfluidstructs.2018.07.013.
  18. Kim, Y.M., You, K.P., Ko, N.H. and Yoon, S.W. (2006), "Use of TLD and MTLD for control of wind-induced vibration of tall buildings", J. Mech. Sci. Technol., 20(9), 1346-1354. https://doi.org/10.1007/BF02915957.
  19. Konar T. and Ghosh A.D. (2021), "Flow damping devices in tuned liquid damper for structural vibration control: A review", Archiv. Comput. Methods Eng., 28(4), 2195-2207. https://doi.org/10.1007/s11831-020-09450-0.
  20. Lee, S.K., Park, E.C., Min, K.W., Lee, S.H., Chung, L. and Park, J.H. (2007), "Real-time hybrid shaking table testing method for the performance evaluation of a tuned liquid damper controlling seismic response of building structures", J. Sound Vib., 302(3), 596-612. https://doi.org/10.1016/j.jsv.2006.12.006.
  21. Li, Y.F., Li, S.Y., Sun, B.S., Liu, M. and Chen, Z.Q. (2021a), "Effectiveness of a tiny tuned liquid damper on mitigating wind-induced responses of cylindrical solar tower based on elastic wind tunnel tests", J. Wind Eng. Ind. Aerod., 208, 104455. https://doi.org/10.1016/j.jweia.2020.104455.
  22. Li, Y.H., Li, A.Q. and Deng, Y. (2021b), "Performance investigation of circular TLD devices used in wind turbine generation tower via both experiment and numerical simulation", J. Vib. Eng. Technol., 9(7), 1715-1732. https://doi.org/10.1007/s42417-021-00323-9.
  23. Love, J.S., Haskett, T.C. and Morava, B. (2018), "Effectiveness of dynamic vibration absorbers implemented in tall buildings", Eng. Struct., 176, 776-784. https://doi.org/10.1016/j.engstruct.2018.09.050.
  24. Malekghasemi, H., Ashasi-Sorkhabi, A., Ghaemmaghami, A.R. and Mercan, O. (2015), "Experimental and numerical investigations of the dynamic interaction of tuned liquid damper-structure systems", J. Vib. Control, 21(14), 2707-2720. https://doi.org/10.1177/1077546313514759.
  25. Marivani, M. and Hamed, M.S. (2014), "Numerical study of slat screen pattern effect on design parameters of tuned liquid dampers", J. Fluids Eng.-Transactions of the ASME, 136(6), 682-694. https://doi.org/10.1115/1.4026662.
  26. Marivani, M. and Hamed, M.S. (2017), "Evaluate pressure drop of slat screen in an oscillating fluid in a tuned liquid damper", Comput. Fluids, 156, 384-401. https://doi.org/10.1016/j.compfluid.2017.08.008.
  27. Rezaee, M. and Aly, A.M. (2016), "Vibration control in wind turbines for performance enhancement: A comparative study", Wind Struct., 22(1), 107-131. https://doi.org/10.12989/was.2016.22.1.107.
  28. Ross, A.S., El Damatty, A.A. and El Ansary, A.M. (2015), "Application of tuned liquid dampers in controlling the torsional vibration of high rise buildings", Wind Struct., 21(5), 537-564. https://doi.org/10.12989/was.2015.21.5.000.
  29. Sun, L.M., Fujino, Y., Pacheco, B.M. and Chaiseri, P. (1992), "Modelling of tuned liquid damper (TLD)", J. Wind Eng. Ind. Aerod., 43(1-3), 1883-1894. https://doi.org/10.1016/0167-6105(92)90609-E.
  30. Suthar, S.J. and Jangid, R.S. (2021), "Design of tuned liquid sloshing dampers using nonlinear constraint optimization for across-wind response control of benchmark tall building", Struct., 33, 2675-2688. https://doi.org/10.1016/j.istruc.2021.05.059.
  31. Suthar, S.J. and Jangid, R.S. (2022), "Multiple tuned liquid sloshing dampers for across-wind response control of benchmark tall building", Innov. Infrastruct. Solut., 7, 55. https://doi.org/10.1007/s41062-021-00650-6.
  32. Tait, M.J. (2008), "Modelling and preliminary design of a structure-TLD system", Eng. Struct, 30(10), 2644-2655. https://doi.org/10.1016/j.engstruct.2008.02.017.
  33. Tait, M.J., El Damatty, A.A., Isyumov, N. and Siddique, M.R. (2005), "Numerical flow models to simulate tuned liquid dampers (TLD) with slat screens", J. Fluids Struct., 20(8), 1007-1023. https://doi.org/10.1016/j.jfluidstructs.2005.04.004.
  34. Tait, M.J., Isyumov, N. and El Damatty, A.A. (2004a), "The efficiency and robustness of a uni-directional tuned liquid damper and modelling with an equivalent TMD", Wind Struct., 7(4), 235-250. https://doi.org/10.12989/was.2004.7.4.235.
  35. Tamura, Y. and Suganuma, S.Y. (1996), "Evaluation of amplitude-dependent damping and natural frequency of buildings during strong winds", J. Wind Eng. Ind. Aerod., 59, 115-130. https://doi.org/10.1016/0167-6105(96)00003-7.
  36. Tang, Z.Y., Dong, Y., Liu, H. and Li, Z.B. (2022), "Frequency domain analysis method of tuned liquid damper controlled multi-degree of freedoms system subject to earthquake excitation", J. Build. Eng., 48, 103910. https://doi.org/10.1016/j.jobe.2021.103910.
  37. Tarpo, M., Georgakis, C., Brandt, A. and Brincker, R. (2020), "Experimental determination of structural damping of a full-scale building with and without tuned liquid dampers", Struct. Control Health Monit., 28(3), e2676. https://doi.org/10.1002/stc.2676.
  38. Tuong B.P.D. and Huynh P.D. (2020), "Experimental test and numerical analysis of a structure equipped with a Multi-Tuned liquid damper subjected to dynamic loading", Int. J. Struct. Stabil. Dyn., 20(7), 2050075. https://doi.org/10.1142/S0219455420500753.
  39. Wang, J.T., Gui, Y., Zhu, F., Jin, F. and Zhou, M.X. (2016), "Real-time hybrid simulation of multi-story structures installed with tuned liquid damper", Struct. Control Health Monitor., 23(7), 1015-1031. https://doi.org/10.1002/stc.1822.
  40. Warnitchai, P. and Pinkaew, T. (1998), "Modelling of liquid sloshing in rectangular tanks with flow-dampening devices", Eng. Struct., 20(7), 593-600. https://doi.org/10.1016/S0141-0296(97)00068-0.
  41. Wu, J.R., Zhong, W.K., Fu, J.Y., Ng, C.T., Sun L.Y. and Huang, P. (2021), "Investigation on the damping of rectangular water tank with bottom-mounted vertical baffles: Hydrodynamic interaction and frequency reduction effect", Eng. Struct., 245, 112815. https://doi.org/10.1016/j.engstruct.2021.112815.
  42. Zahrai, S.M., Abbasi, S., Samali, B. and Vrcelj, Z. (2012), "Experimental investigation of utilizing TLD with baffles in a scaled down 5-story benchmark building", J. Fluids Struct., 28, 194-210. https://doi.org/10.1016/j.jfluidstructs.2011.08.016.
  43. Zhang, L.F., Zhang, L.L., Xie, Z.N. and Jiang, Y. (2022), "Experimental study on vibration reduction performance of tuned liquid dampers with damping screens", J. Vib. Eng., 35(3), 674-680. http://kns.cnki.net/kcms/detail/32.1349.TB.20210616.1507.002. 10616.1507.002
  44. Zhang, L.L., Hu, X.Q, Xie, Z.N., Shi, B.Q. Zhang, L. and Wang, R.H. (2020), "Field measurement study on time-varying characteristics of modal parameters of super high-rise buildings during super typhoon", J. Wind Eng. Indust. Aero., 200, 104139. https://doi.org/10.1016/j.jweia.2020.104139.
  45. Zhu, F., Wang, J.T., Jin, F., Lu, L.Q., Gui, Y. and Zhou, M.X. (2017), "Real-time hybrid simulation of the size effect of tuned liquid dampers", Struct. Control Health Monitor., 24(9), e1962. https://doi.org/10.1002/stc.1962.
  46. ANSYS Inc. (2019), ANSYS 19.2, ANSYS, Canonsburg, PA, USA
  47. Tait, M.J. (2004b), The Performance of 1-D and 2-D Tuned Liquid Dampers, Ph.D. Dissertation; University of Western Ontario, London, Canada.
  48. GB50009-2012 (2012), Load Code for the Design of Building Structures, Architectural Industry Press of China; Beijing, China.
  49. JGJ 3-2010 (2010), Technical Specification for Concrete Structures of Tall Building, Architectural Industry Press of China; Beijing, China.