References
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2006, 29, S43.
- Jamison, D.T.; Breman, J.G.; Measham, A.R.; Alleyne, G.; Claeson, M.; Evans, D.B.; Jha, P.; Mills, A.; Musgrove, P. Disease Control Priorities in Developing Countries; World Bank Publications: Washington, DC, USA, 2006.
- World Health Organization (WHO). Diabetes Country Profiles 2016. 2016. Available online: https://cdn.who.int/media/docs/default-source/ncds/ncdsurveillance/diabetes_profiles_explanatory_notes.pdf?sfvrsn=f2a2083c_5&download=true (accessed on 1 July 2022).
- Rewers, M.; Hamman, R.F. Risk factors for non-insulin-dependent diabetes. Diabetes Am. 1995, 2, 179-220.
- International Diabetes Federation (IDF). IDF Diabetes Atlas, 9th ed.; International Diabetes Federation: Brussels, Belgium, 2019.
- Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 2014, 103, 137-149. https://doi.org/10.1016/j.diabres.2013.11.002
- NCD Risk Factor Collaboration (NCD-RisC); Walton, J. Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 2016, 387, 1513-1530. https://doi.org/10.1016/S0140-6736(16)00618-8
- Birjais R, Mourya AK, Chauhan R, Kaur H. Prediction and diagnosis of future diabetes risk:A machine learning approach. SN Appl Sci. 2019;1:1-8. https://doi.org/10.1007/s42452-019-1117-9
- Sadhu A, Jadli A. Early-stage diabetes risk prediction:A comparative analysis of classification algorithms. IntAdv Res J SciEngTechnol (IARJSET) 2021;8:193-201.
- Xue J, Min F, Ma F. Research on diabetes prediction method based on machine learning. J PhysConf Ser. 2020;1684:1-6. https://doi.org/10.1088/1742-6596/1684/1/012062
- Le TM, Vo TM, Pham TN, Dao SV. A novel wrapper-based feature selection for early diabetes prediction enhanced with a metaheuristic. IEEE Access. 2020;9:7869-84.
- Julius AO, Ayokunle AO, Ibrahim FO. Early diabetic risk prediction using machine learning classification techniques. Available from:https://ijisrt.com/early-diabetic-risk-prediction-using-machine-learning-classification-techniques .
- Shafi S, Ansari GA. Early prediction of diabetes disease &classification of algorithms using machine learning approach. In Proceedings of the International Conference on Smart Data Intelligence (ICSMDI 2021) Available from:SSRN 3852590 (2021)
- Khanam JJ, Foo SY. A comparison of machine learning algorithms for diabetes prediction. ICT Express. 2021;7:432-9. https://doi.org/10.1016/j.icte.2021.02.004
- Sisodia D, Sisodia DS. Prediction of diabetes using classification algorithms. Procedia Comput Sci. 2018;132:1578-85. https://doi.org/10.1016/j.procs.2018.05.122
- Agrawal P, Dewangan AK. A brief survey on the techniques used for the diagnosis of diabetes-mellitus. Int Res J Eng Tech IRJET. 2015;2:1039-43.
- Rathore A, Chauhan S, Gujral S. Detecting and predicting diabetes using supervised learning:An approach towards better healthcare for women. Int J Adv Res Comput Sci. 2017;8:1192-4.
- Hassan AS, Malaserene I, Leema AA. Diabetes mellitus prediction using classification techniques. Int J InnovTechnolExplor Eng. 2020;9:2080-4. https://doi.org/10.35940/ijitee.E2692.039520
- Kandhasamy JP, Balamurali S. Performance analysis of classifier models to predict diabetes mellitus. Procedia Comput Sci. 2015;47:45-51. https://doi.org/10.1016/j.procs.2015.03.182
- Meng XH, Huang YX, Rao DP, Zhang Q, Liu Q. Comparison of three data mining models for predicting diabetes or prediabetes by risk factors. Kaohsiung J Med Sci. 2013;29:93-9. https://doi.org/10.1016/j.kjms.2012.08.016
- Nai-Arun N, Moungmai R. Comparison of classifiers for the risk of diabetes prediction. Procedia Comput Sci. 2015;69:132-42. https://doi.org/10.1016/j.procs.2015.10.014
- Saravananathan K, Velmurugan T. Analyzing diabetic data using classification algorithms in data mining. Indian J Sci Technol. 2016;9:1-6. https://doi.org/10.17485/ijst/2016/v9i43/93874
- 23. Kumari VA, Chitra R. Classification of diabetes disease using support vector machine. Int J Eng Res Appl. 2013;3:1797-801.
- 24. Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I. Machine learning and data mining methods in diabetes research. ComputStructBiotechnol J. 2017;15:104-16. https://doi.org/10.1016/j.csbj.2016.12.005
- Rawat V, Suryakant S. A classification system for diabetic patients with machine learning techniques. Int J Math EngManag Sci. 2019;4:729-44. https://doi.org/10.33889/IJMEMS.2019.4.3-057
- Perveen S, Shahbaz M, Guergachi A, Keshavjee K. Performance analysis of data mining classification techniques to predict diabetes. Procedia Comput Sci. 2016;82:115-21. https://doi.org/10.1016/j.procs.2016.04.016
- Mujumdar A, Vaidehi V. Diabetes prediction using machine learning algorithms. Procedia Comput Sci. 2019;165:292-9. https://doi.org/10.1016/j.procs.2020.01.047
- Diabetes mellitus affected patients classification and diagnosis through machine learning techniques. Procedia Comput Sci. 2017;112:2519-28. https://doi.org/10.1016/j.procs.2017.08.193
- S. Wadhwa and K. Babber, "Artificial intelligence in health care: predictive analysis on diabetes using machine learning algorithms," in Proceeding of the International Conference on Computational Science and Its Applications, pp. 354-366, Springer, Cagliari, Italy, July 2020.
- S. Majumder, Y. Elloumi, M. Akil, R. Kachouri, and N. Kehtarnavaz, "A deep learning-based smartphone app for real-time detection of five stages of diabetic retinopathy," in Proceedings of the Real-Time Image Processing and Deep Learning 2020, vol. 11401, p. 1140106, International Society for Optics and Photonics, April 2020.
- A. Hussain and S. Naaz, "Prediction of diabetes mellitus: comparative study of various machine learning models," in Proceeding of the International Conference on Innovative Computing and Communications, pp. 103-115, Springer, Delhi, India, January 2021.
- G. Acciaroli, M. Vettoretti, A. Facchinetti, and G. Sparacino, "Calibration of minimally invasive continuous glucose monitoring sensors: state-of-the-art and current perspectives," Biosensors, vol. 8, no. 1, 2018.
- Zolfaghari R. Diagnosis of diabetes in female population of pima indian heritage with ensemble of bp neural network and svm. Int. J. Comput. Eng. Manag/ 2012;15:2230-7893.
- Sneha N., Gangil T. Analysis of diabetes mellitus for early prediction using optimal features selection. J. Big Data. 2019;6:13. doi: 10.1186/s40537-019-0175-6.
- Edeh M.O., Khalaf O.I., Tavera C.A., Tayeb S., Ghouali S., Abdulsahib G.M., Richard-Nnabu N.E., Louni A. A Classification Algorithm-Based Hybrid Diabetes Prediction Model. Front. Public Health. 2022;10:829519. doi: 10.3389/fpubh.2022.829519.
- Massaro A., Maritati V., Giannone D., Convertini D., Galiano A. LSTM DSS Automatism and Dataset Optimization for Diabetes Prediction. Appl. Sci. 2019;9:3532. doi: 10.3390/app9173532.
- Dadgar S.M.H., Kaardaan M. A Hybrid Method of Feature Selection and Neural Network with Genetic Algorithm to Predict Diabetes. Int. J. Mechatron. Electr. Comput. Technol. (IJMEC) 2017;7:3397-3404.
- Zou Q., Qu K., Luo Y., Yin D., Ju Y., Tang H. Predicting Diabetes Mellitus With Machine Learning Techniques. Front. Genet. 2018;9:515. doi: 10.3389/fgene.2018.00515.
- Ashiquzzaman A., Tushar A.K., Islam M., Shon D., Im K., Park J.-H., Lim D.-S., Kim J. IT Convergence and Security 2017. Springer; Singapore: 2018. Reduction of overfitting in diabetes prediction using deep learning neural network; pp. 35-43.
- Kannadasan K., Edla D.R., Kuppili V. Type 2 diabetes data classification using stacked autoencoders in deep neural networks. Clin. Epidemiol. Glob. Health. 2019;7:530-535. doi: 10.1016/j.cegh.2018.12.004.
- Rahman M., Islam D., Mukti R.J., Saha I. A deep learning approach based on convolutional LSTM for detecting diabetes. Comput. Biol. Chem. 2020;88:107329. doi: 10.1016/j.compbiolchem.2020.107329.
- Alex S.A., Nayahi J., Shine H., Gopirekha V. Deep convolutional neural network for diabetes mellitus prediction. Neural Comput. Appl. 2022;34:1319-1327. doi: 10.1007/s00521-021-06431-7.
- Kalagotla S.K., Gangashetty S.V., Giridhar K. A novel stacking technique for prediction of diabetes. Comput. Biol. Med. 2021;135:104554. doi: 10.1016/j.compbiomed.2021.104554.
- Jakka A., Vakula Rani J. Performance evaluation of machine learning models for diabetes prediction. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 2019;8:1976-1980. https://doi.org/10.35940/ijitee.K2155.0981119
- Sheetal, Dr Sukhvinder Singh Deora, "DIABETIC DISEASES PREDICTION USING MACHINE LEARNING TECHNIQUES: A REVIEW" in Proceedings of the National Conference on Computational Intelligence and Data Science (NCCIDS-23), March, 2023, MDU, Rohtak, pp. 195-199.
- Sukhvinder Singh Deora, Mandeep Kaur, "Image Processing and Computer Vision: Relevance and Applications in the Modern World" in Nova Science Publishers, 2023, The Impact of Thrust Technologies on Image Processing, https://doi.org/10.52305/ATJL4552 Volume 1 Pages 233-252