DOI QR코드

DOI QR Code

Prediction of residual compressive strength of fly ash based concrete exposed to high temperature using GEP

  • Tran M. Tung (Sustainable Developments in Civil Engineering Research Group, Faculty of Civil Engineering, Ton Duc Thang University) ;
  • Duc-Hien Le (Sustainable Developments in Civil Engineering Research Group, Faculty of Civil Engineering, Ton Duc Thang University) ;
  • Olusola E. Babalola (Sustainable Developments in Civil Engineering Research Group, Faculty of Civil Engineering, Ton Duc Thang University)
  • Received : 2022.02.23
  • Accepted : 2022.11.30
  • Published : 2023.02.25

Abstract

The influence of material composition such as aggregate types, addition of supplementary cementitious materials as well as exposed temperature levels have significant impacts on concrete residual mechanical strength properties when exposed to elevated temperature. This study is based on data obtained from literature for fly ash blended concrete produced with natural and recycled concrete aggregates to efficiently develop prediction models for estimating its residual compressive strength after exposure to high temperatures. To achieve this, an extensive database that contains different mix proportions of fly ash blended concrete was gathered from published articles. The specific design variables considered were percentage replacement level of Recycled Concrete Aggregate (RCA) in the mix, fly ash content (FA), Water to Binder Ratio (W/B), and exposed Temperature level. Thereafter, a simplified mathematical equation for the prediction of concrete's residual compressive strength using Gene Expression Programming (GEP) was developed. The relative importance of each variable on the model outputs was also determined through global sensitivity analysis. The GEP model performance was validated using different statistical fitness formulas including R2, MSE, RMSE, RAE, and MAE in which high R2 values above 0.9 are obtained in both the training and validation phase. The low measured errors (e.g., mean square error and mean absolute error are in the range of 0.0160 - 0.0327 and 0.0912 - 0.1281 MPa, respectively) in the developed model also indicate high efficiency and accuracy of the model in predicting the residual compressive strength of fly ash blended concrete exposed to elevated temperatures.

Keywords

References

  1. Agrawal, V.M. and Savoika, P.P. (2021), "Optimization of binary and ternary concrete composed of fly ash and ultra-fine slag using GRA", Adv. Concrete Constr., 12(4), 283-294. https://doi.org/https://doi.org/10.12989/acc.2021.12.4.283.
  2. Ahmad, S., Sallam, Y.S. and Al-Hawas, M.A. (2014), "Effects of key factors on compressive and tensile strengths of concrete exposed to elevated temperatures", Arab. J. Sci. Eng., 39(6), 4507-4513. https://doi.org/10.1007/s13369-014-1166-8.
  3. Al-Musawi, A.A., Alwanas, A.A.H., Salih, S.Q., Ali, Z.H., Tran, M.T. and Yaseen, Z.M. (2020), "Shear strength of SFRCB without stirrups simulation: implementation of hybrid artificial intelligence model", Eng. Comput., 36(1), 1-11. https://doi.org/10.1007/s00366-018-0681-8.
  4. Anupama, Krishna, D., Priyadarsini, R.S. and Narayanan, S. (2019), "Effect of elevated temperatures on the mechanical properties of concrete", Procedia Struct. Integr., 14, 384-394. https://doi.org/10.1016/j.prostr.2019.05.047.
  5. Ashteyat, A., Obaidat, Y.T. and Murad, Y.Z. (2020), "Compressive strength prediction of lightweight short columns at elevated temperature using gene expression programming and artificial neural network", 26(2), 189-199. https://doi.org/https://doi.org/10.3846/jcem.2020.11931.
  6. Aslam, F., Farooq, F., Amin, M.N., Khan, K., Waheed, A., Akbar, A., Javed, M.F., Alyousef, R. and Alabdulijabbar, H. (2020), "Applications of gene expression programming for estimating compressive strength of high-strength concrete", Adv. Civil Eng., 2020, 1-23. https://doi.org/10.1155/2020/8850535.
  7. Babalola, O.E., Awoyera, P.O., Le, D.H. and Bendezu Romero, L.M. (2021), "A review of residual strength properties of normal and high strength concrete exposed to elevated temperatures: Impact of materials modification on behaviour of concrete composite", Constr. Build. Mater., 296, 123448. https://doi.org/10.1016/j.conbuildmat.2021.123448.
  8. Bingol, A.F., Tortum, A. and Gul, R. (2013), "Neural networks analysis of compressive strength of lightweight concrete after high temperatures", Mater. Des. (1980-2015), 52, 258-264. https://doi.org/10.1016/j.matdes.2013.05.022.
  9. Castelli, M., Vanneschi, L. and Silva, S. (2013), "Prediction of high performance concrete strength using genetic programming with geometric semantic genetic operators", Expert Syst. Appl., 40(17), 6856-6862. https://doi.org/10.1016/j.eswa.2013.06.037.
  10. CEB-FIP, B.38. (2007), Fire Design of Concrete Structures, Materials, Structures and Modelling - State of Art Report, Federation Internationale Du Beton (Fib) Bulletin 38, Lausanne, Switzerland.
  11. Chen, G.M, He, Y.H., Yang, H., Chen, J.F. and Guo, Y.C. (2014), "Compressive behavior of steel fiber reinforced recycled aggregate concrete after exposure to elevated temperatures", Constr. Build. Mater. J., 71, 1-15. https://doi.org/10.1016/j.conbuildmat.2014.08.012.
  12. Dilbas, H., Simsek, M. and Cakir, O. (2014), "An investigation on mechanical and physical properties of recycled aggregate concrete (RAC) with and without silica fume", Constr. Build. Mater., 61, 50-59. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2014.02.057.
  13. Fakhrian, S., Behbahani, H. and Mashhadi, S. (2020), "Predicting post-fire behavior of green geopolymer mortar containing recycled concrete aggregate via GEP approach", J. Soft Comput. Civil Eng., 4(2), 22-45. https://doi.org/10.22115/scce.2020.220919.1182.
  14. Ferreira, C. (2001), "Gene expression programming: A new adaptive algorithm for solving problems candida", Complex Sys., 13(2), 87-129. https://doi.org/10.1590/s0104-07072011000400008.
  15. Ferreira, C. (2002), "Gene expression programming in problem solving", Soft Comput. Indust., 1996, 635-653. https://doi.org/10.1007/978-1-4471-0123-9_54.
  16. Ferreira, C. (2006), Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence (Vol. 21), 2nd Edition, Springer.
  17. Gales, J. and Cree, D. (2015), "Fire performance of sustainable recycled concrete aggregates: Mechanical properties at elevated temperatures and current research needs", Fire Technol., 52, 817-845. https://doi.org/10.1007/s10694-015-0504-z.
  18. GeneXproTools (n.d.), Data Modeling & Analysis Software.
  19. Gupta, T., Patel, K.A., Siddique, S., Sharma, R.K. and Chaudhary, S. (2019), "Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN", Measure., 147, 106870. https://doi.org/https://doi.org/10.1016/j.measurement.2019.106870.
  20. Han, L.H., Zhou, K., Tan, Q.H. and Song, T.Y. (2020), "Performance of steel reinforced concrete columns after exposure to fire: Numerical analysis and application", Eng. Struct., 211, 110421. https://doi.org/https://doi.org/10.1016/j.engstruct.2020.110421.
  21. Iqbal, M.F., Liu, Q., Azim, I., Zhu, X., Yang, J., Javed, M.F. and Rauf, M. (2020), "Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming", J. Hazard. Mater., 384, 121322. https://doi.org/https://doi.org/10.1016/j.jhazmat.2019.121322.
  22. Al-Jabri, K.S., Waris, M.B. and Al-Saidy, A.H. (2015), "Effect of aggregate and water to cement ratio on concrete properties at elevated temperature", Fire Mater., 40(7), 913-925. https://doi.org/10.1002/fam.
  23. Khan, M.S. and Abbas, H. (2014), "Effect of Elevated Temperature on the Behavior of High Volume Fly Ash Concrete", KSCE J. Civil Eng., 19, 1825-1831. https://doi.org/10.1007/s12205-014-1092-z.
  24. Kien, N., Satomi, T. and Takahashi, H. (2018), "Effect of mineral admixtures on properties of recycled aggregate concrete at high temperature", Constr. Build. Mater., 184, 361-373. https://doi.org/10.1016/j.conbuildmat.2018.06.237.
  25. Kim, J.S. and Lee, H.K. (2021), "Thermomechanical behavior of alkali-activated slag/fly ash composites with PVA fibers exposed to elevated temperatures", Adv. Concrete Constr., 11(1), 11-18. https://doi.org/https://doi.org/10.12989/acc.2021.11.1.011.
  26. Kodur, V.K.R., Raut, N.K., Mao, X.Y. and Khaliq, W. (2013), "Simplified approach for evaluating residual strength of fireexposed reinforced concrete columns", Mater. Struct., 46(12), 2059-2075. https://doi.org/https://doi.org/10.1617/s11527-013-0036-2.
  27. Kucherenko, S. and Zaccheus, O. (2019), SobolGSA Software (V3.1.1). Sargent Centre for Process Systems Engineering, Imperial College, London. https://www.imperial.ac.uk/processsystems-engineering/research/free-software/sobolgsa-software/
  28. Kumar, V.V.P. and Prasad, D.R. (2019), "Influence of supplementary cementitious materials on strength and durability characteristics of concrete", Adv. Concrete Constr., 7(2), 75. https://doi.org/10.12989/acc.2019.7.2.075.
  29. Lau, A. and Anson, M. (2006), "Effect of high temperatures on high performance steel fibre reinforced concrete", Cement Concrete Res., 36(9), 1698-1707. https://doi.org/10.1016/j.cemconres.2006.03.024.
  30. Ma, Q., Guo, R., Zhao, Z., Lin, Z. and He, K. (2015), "Mechanical properties of concrete at high temperature - A review", Constr. Build. Mater., 93, 371-383. https://doi.org/10.1016/j.conbuildmat.2015.05.131.
  31. Mansouri, I., Azmathulla, H.M. and Hu, J.W. (2018), "Gene expression programming application for prediction of ultimate axial strain of FRP-confined concrete", Adv. Civil Arch. Eng., 9(16), 64-76. https://doi.org/10.13167/2018.16.6.
  32. Mansouri, I., Ostovari, M., Awoyera, P.O. and Hu, J.W. (2021), "Predictive modeling of the compressive strength of bacteria-incorporated geopolymer concrete using a gene expression programming approach", Comput. Concrete, 27(4), 319-332. https://doi.org/10.12989/cac.2021.27.4.319.
  33. Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H. and Bolandi, H. (2012), "A new predictive model for compressive strength of HPC using gene expression programming", Adv. Eng. Software, 45(1), 105-114. https://doi.org/10.1016/j.advengsoft.2011.09.014.
  34. Nematzadeh, M., Baradaran-Nasiri, A. and Hosseini, M. (2019), "Effect of pozzolans on mechanical behavior of recycled refractory brick concrete in fire", Struct. Eng. Mech., 72(3), 339-354. https://doi.org/https://doi.org/10.12989/sem.2019.72.3.339
  35. Nematzadeh, M., Shahmansouri, A.A. and Fakoor, M. (2020), "Post-fire compressive strength of recycled PET aggregate concrete reinforced with steel fibers: Optimization and prediction via RSM and GEP", Constr. Build. Mater., 252, 119057. https://doi.org/10.1016/j.conbuildmat.2020.119057.
  36. Novak, J. and Kohoutkova, A. (2018), "Mechanical properties of concrete composites subject to elevated temperature", Fire Saf. J., 95, 66-76. https://doi.org/10.1016/j.firesaf.2017.10.010.
  37. Poon, C.S., Azhar, S., Anson, M. and Wong, Y.L. (2001), "Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures", Cement Concrete Res., 31(9), 1291-1300. https://doi.org/10.1016/S0008-8846(01)00580-4.
  38. Poon, C.S., Azhar, S., Anson, M. and Wong, Y.L. (2003), "Performance of metakaolin concrete at elevated temperatures", Cement Concrete Compos., 25(1), 83-89. https://doi.org/10.1016/S0958-9465(01)00061-0.
  39. Vikhar, P.A. (2016), "Evolutionary algorithms: A critical review and its future prospects", International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), Jalgaon, India, December.
  40. Sahani, A.K., Samanta, A.K. and Roy, D.K.S. (2019), "Influence of mineral by-products on compressive strength and microstructure of concrete at high temperature", Adv. Concrete Constr., 7(4), 263-275. https://doi.org/https://doi.org/10.12989/acc.2019.7.4.263.
  41. Salahuddin, H., Nawaz, A., Maqsoom, A., Mehmood, T. and Zeeshan, B.A. (2019), "Effects of elevated temperature on performance of recycled coarse aggregate concrete", Constr. Build. Mater., 202, 415-425. https://doi.org/10.1016/j.conbuildmat.2019.01.011.
  42. Saltelli, A., Tarantola, S. and Campolongo, F. (2000), "Sensitivity analysis as an ingredient of modeling", Stat. Sci., 15(4), 377-395. http://www.jstor.org/stable/2676831. https://doi.org/10.1214/ss/1009213004
  43. Sarhat, S.R. and Sherwood, E.G. (2013), "Residual mechanical response of recycled aggregate concrete after exposure to elevated temperatures", J. Mater. Civil Eng., 25(11), 1721-1730. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000719.
  44. Savva, A., Manita, P. and Sideris, K.K. (2005), "Influence of elevated temperatures on the mechanical properties of blended cement concretes prepared with limestone and siliceous aggregates", Cement Concrete Compos., 27(2), 239-248. https://doi.org/10.1016/j.cemconcomp.2004.02.013.
  45. Shahmansouri, A.A., Akbarzadeh Bengar, H. and Ghanbari, S. (2020), "Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method", J. Build. Eng., 31, 101326. https://doi.org/10.1016/j.jobe.2020.101326.
  46. Sharma, P., Wadhwa, A. and Komal, K. (2014), "Analysis of selection schemes for solving an optimization problem in genetic algorithm", Int. J. Comput. Appl., 93(11), 1-3. https://doi.org/10.5120/16256-5714.
  47. Tang, C.W. (2019), "Residual properties of high-strength fiber reinforced concrete after exposure to high temperatures", Comput. Concrete, 24(1), 63-71. https://doi.org/https://doi.org/10.12989/cac.2019.24.1.063.
  48. Tufail, M., Shahzada, K., Gencturk, B. and Wei, J. (2017), "Effect of elevated temperature on mechanical properties of limestone, quartzite and granite concrete", Int. J. Concrete Struct. Mater., 11(1), 17-28. https://doi.org/10.1007/s40069-016-0175-2.
  49. Varona, F.B, Baeza, F.J., Bru, D. and Ivorra, S. (2020), "Nonlinear multivariable model for predicting the steel to concrete bond after high temperature exposure", Constr. Build. Mater., 249, 118713. https://doi.org/10.1016/j.conbuildmat.2020.118713.
  50. Varona, F.B., Baeza-Brotons, F., Tenza-Abril, A.J., Baeza, F.J. and Banon, L. (2020), "Residual compressive strength of recycled aggregate concretes after high temperature exposure", Mater., 13(8), 1981. https://doi.org/10.3390/MA13081981.
  51. Wang, Y., Liu, F., Xu, L. and Zhao, H. (2019), "Effect of elevated temperatures and cooling methods on strength of concrete made with coarse and fine recycled concrete aggregates", Constr. Build. Mater., 210, 540-547. https://doi.org/10.1016/j.conbuildmat.2019.03.215.
  52. Xiao, J. and Konig, G. (2004), "Study on concrete at high temperature in China - An overview", Fire Saf. J., 39(1), 89-103. https://doi.org/10.1016/S0379-7112(03)00093-6.
  53. Xiao, J. and Zhang, C. (2007), "Fire damage and residual strengths of recycled aggregate concrete", Key Eng. Mater., 348-349, 937-940. https://doi.org/10.4028/www.scientific.net/KEM.348-349.937.
  54. Xu, Y., Wong, Y.L., Poon, C.S. and Anson, M. (2003), "Influence of PFA on cracking of concrete and cement paste after exposure to high temperatures", Cement Concrete Res., 33(12), 2009-2016. https://doi.org/10.1016/S0008-8846(03)00216-3.
  55. Yonggui, W., Shuaipeng, L., Hughes, P. and Yuhui, F. (2020), "Mechanical properties and microstructure of basalt fibre and nano-silica reinforced recycled concrete after exposure to elevated temperatures", Constr. Build. Mater., 247, 118561. https://doi.org/10.1016/j.conbuildmat.2020.118561.
  56. Yu, Y., Li, W., Li, J. and Nguyen, T.N. (2018), "A novel optimised self-learning method for compressive strength prediction of high performance concrete", Constr. Build. Mater., 184, 229-247. https://doi.org/10.1016/j.conbuildmat.2018.06.219.
  57. Zamanian, S., Terranova, B. and Shafieezadeh, A. (2020), "Significant variables affecting the performance of concrete panels impacted by wind-borne projectiles: A global sensitivity analysis", Int. J. Impact Eng., 144, 103650. https://doi.org/https://doi.org/10.1016/j.ijimpeng.2020.103650.
  58. Zega, C.J., Antonio, A. and Maio, D. (2009), "Recycled concrete made with different natural coarse aggregates exposed to high temperature", Constr. Build. Mater., 23(5), 2047-2052. https://doi.org/10.1016/j.conbuildmat.2008.08.017.
  59. Zega, C.J. and Di Maio, A .A. (2006), "Recycled concrete exposed to high temperatures", Mag. Concrete Res., 9831(10), 675-682. https://doi.org/https://doi.org/10.1680/macr.2006.58.10.675.