References
- Agrawal, V.M. and Savoika, P.P. (2021), "Optimization of binary and ternary concrete composed of fly ash and ultra-fine slag using GRA", Adv. Concrete Constr., 12(4), 283-294. https://doi.org/https://doi.org/10.12989/acc.2021.12.4.283.
- Ahmad, S., Sallam, Y.S. and Al-Hawas, M.A. (2014), "Effects of key factors on compressive and tensile strengths of concrete exposed to elevated temperatures", Arab. J. Sci. Eng., 39(6), 4507-4513. https://doi.org/10.1007/s13369-014-1166-8.
- Al-Musawi, A.A., Alwanas, A.A.H., Salih, S.Q., Ali, Z.H., Tran, M.T. and Yaseen, Z.M. (2020), "Shear strength of SFRCB without stirrups simulation: implementation of hybrid artificial intelligence model", Eng. Comput., 36(1), 1-11. https://doi.org/10.1007/s00366-018-0681-8.
- Anupama, Krishna, D., Priyadarsini, R.S. and Narayanan, S. (2019), "Effect of elevated temperatures on the mechanical properties of concrete", Procedia Struct. Integr., 14, 384-394. https://doi.org/10.1016/j.prostr.2019.05.047.
- Ashteyat, A., Obaidat, Y.T. and Murad, Y.Z. (2020), "Compressive strength prediction of lightweight short columns at elevated temperature using gene expression programming and artificial neural network", 26(2), 189-199. https://doi.org/https://doi.org/10.3846/jcem.2020.11931.
- Aslam, F., Farooq, F., Amin, M.N., Khan, K., Waheed, A., Akbar, A., Javed, M.F., Alyousef, R. and Alabdulijabbar, H. (2020), "Applications of gene expression programming for estimating compressive strength of high-strength concrete", Adv. Civil Eng., 2020, 1-23. https://doi.org/10.1155/2020/8850535.
- Babalola, O.E., Awoyera, P.O., Le, D.H. and Bendezu Romero, L.M. (2021), "A review of residual strength properties of normal and high strength concrete exposed to elevated temperatures: Impact of materials modification on behaviour of concrete composite", Constr. Build. Mater., 296, 123448. https://doi.org/10.1016/j.conbuildmat.2021.123448.
- Bingol, A.F., Tortum, A. and Gul, R. (2013), "Neural networks analysis of compressive strength of lightweight concrete after high temperatures", Mater. Des. (1980-2015), 52, 258-264. https://doi.org/10.1016/j.matdes.2013.05.022.
- Castelli, M., Vanneschi, L. and Silva, S. (2013), "Prediction of high performance concrete strength using genetic programming with geometric semantic genetic operators", Expert Syst. Appl., 40(17), 6856-6862. https://doi.org/10.1016/j.eswa.2013.06.037.
- CEB-FIP, B.38. (2007), Fire Design of Concrete Structures, Materials, Structures and Modelling - State of Art Report, Federation Internationale Du Beton (Fib) Bulletin 38, Lausanne, Switzerland.
- Chen, G.M, He, Y.H., Yang, H., Chen, J.F. and Guo, Y.C. (2014), "Compressive behavior of steel fiber reinforced recycled aggregate concrete after exposure to elevated temperatures", Constr. Build. Mater. J., 71, 1-15. https://doi.org/10.1016/j.conbuildmat.2014.08.012.
- Dilbas, H., Simsek, M. and Cakir, O. (2014), "An investigation on mechanical and physical properties of recycled aggregate concrete (RAC) with and without silica fume", Constr. Build. Mater., 61, 50-59. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2014.02.057.
- Fakhrian, S., Behbahani, H. and Mashhadi, S. (2020), "Predicting post-fire behavior of green geopolymer mortar containing recycled concrete aggregate via GEP approach", J. Soft Comput. Civil Eng., 4(2), 22-45. https://doi.org/10.22115/scce.2020.220919.1182.
- Ferreira, C. (2001), "Gene expression programming: A new adaptive algorithm for solving problems candida", Complex Sys., 13(2), 87-129. https://doi.org/10.1590/s0104-07072011000400008.
- Ferreira, C. (2002), "Gene expression programming in problem solving", Soft Comput. Indust., 1996, 635-653. https://doi.org/10.1007/978-1-4471-0123-9_54.
- Ferreira, C. (2006), Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence (Vol. 21), 2nd Edition, Springer.
- Gales, J. and Cree, D. (2015), "Fire performance of sustainable recycled concrete aggregates: Mechanical properties at elevated temperatures and current research needs", Fire Technol., 52, 817-845. https://doi.org/10.1007/s10694-015-0504-z.
- GeneXproTools (n.d.), Data Modeling & Analysis Software.
- Gupta, T., Patel, K.A., Siddique, S., Sharma, R.K. and Chaudhary, S. (2019), "Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN", Measure., 147, 106870. https://doi.org/https://doi.org/10.1016/j.measurement.2019.106870.
- Han, L.H., Zhou, K., Tan, Q.H. and Song, T.Y. (2020), "Performance of steel reinforced concrete columns after exposure to fire: Numerical analysis and application", Eng. Struct., 211, 110421. https://doi.org/https://doi.org/10.1016/j.engstruct.2020.110421.
- Iqbal, M.F., Liu, Q., Azim, I., Zhu, X., Yang, J., Javed, M.F. and Rauf, M. (2020), "Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming", J. Hazard. Mater., 384, 121322. https://doi.org/https://doi.org/10.1016/j.jhazmat.2019.121322.
- Al-Jabri, K.S., Waris, M.B. and Al-Saidy, A.H. (2015), "Effect of aggregate and water to cement ratio on concrete properties at elevated temperature", Fire Mater., 40(7), 913-925. https://doi.org/10.1002/fam.
- Khan, M.S. and Abbas, H. (2014), "Effect of Elevated Temperature on the Behavior of High Volume Fly Ash Concrete", KSCE J. Civil Eng., 19, 1825-1831. https://doi.org/10.1007/s12205-014-1092-z.
- Kien, N., Satomi, T. and Takahashi, H. (2018), "Effect of mineral admixtures on properties of recycled aggregate concrete at high temperature", Constr. Build. Mater., 184, 361-373. https://doi.org/10.1016/j.conbuildmat.2018.06.237.
- Kim, J.S. and Lee, H.K. (2021), "Thermomechanical behavior of alkali-activated slag/fly ash composites with PVA fibers exposed to elevated temperatures", Adv. Concrete Constr., 11(1), 11-18. https://doi.org/https://doi.org/10.12989/acc.2021.11.1.011.
- Kodur, V.K.R., Raut, N.K., Mao, X.Y. and Khaliq, W. (2013), "Simplified approach for evaluating residual strength of fireexposed reinforced concrete columns", Mater. Struct., 46(12), 2059-2075. https://doi.org/https://doi.org/10.1617/s11527-013-0036-2.
- Kucherenko, S. and Zaccheus, O. (2019), SobolGSA Software (V3.1.1). Sargent Centre for Process Systems Engineering, Imperial College, London. https://www.imperial.ac.uk/processsystems-engineering/research/free-software/sobolgsa-software/
- Kumar, V.V.P. and Prasad, D.R. (2019), "Influence of supplementary cementitious materials on strength and durability characteristics of concrete", Adv. Concrete Constr., 7(2), 75. https://doi.org/10.12989/acc.2019.7.2.075.
- Lau, A. and Anson, M. (2006), "Effect of high temperatures on high performance steel fibre reinforced concrete", Cement Concrete Res., 36(9), 1698-1707. https://doi.org/10.1016/j.cemconres.2006.03.024.
- Ma, Q., Guo, R., Zhao, Z., Lin, Z. and He, K. (2015), "Mechanical properties of concrete at high temperature - A review", Constr. Build. Mater., 93, 371-383. https://doi.org/10.1016/j.conbuildmat.2015.05.131.
- Mansouri, I., Azmathulla, H.M. and Hu, J.W. (2018), "Gene expression programming application for prediction of ultimate axial strain of FRP-confined concrete", Adv. Civil Arch. Eng., 9(16), 64-76. https://doi.org/10.13167/2018.16.6.
- Mansouri, I., Ostovari, M., Awoyera, P.O. and Hu, J.W. (2021), "Predictive modeling of the compressive strength of bacteria-incorporated geopolymer concrete using a gene expression programming approach", Comput. Concrete, 27(4), 319-332. https://doi.org/10.12989/cac.2021.27.4.319.
- Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H. and Bolandi, H. (2012), "A new predictive model for compressive strength of HPC using gene expression programming", Adv. Eng. Software, 45(1), 105-114. https://doi.org/10.1016/j.advengsoft.2011.09.014.
- Nematzadeh, M., Baradaran-Nasiri, A. and Hosseini, M. (2019), "Effect of pozzolans on mechanical behavior of recycled refractory brick concrete in fire", Struct. Eng. Mech., 72(3), 339-354. https://doi.org/https://doi.org/10.12989/sem.2019.72.3.339
- Nematzadeh, M., Shahmansouri, A.A. and Fakoor, M. (2020), "Post-fire compressive strength of recycled PET aggregate concrete reinforced with steel fibers: Optimization and prediction via RSM and GEP", Constr. Build. Mater., 252, 119057. https://doi.org/10.1016/j.conbuildmat.2020.119057.
- Novak, J. and Kohoutkova, A. (2018), "Mechanical properties of concrete composites subject to elevated temperature", Fire Saf. J., 95, 66-76. https://doi.org/10.1016/j.firesaf.2017.10.010.
- Poon, C.S., Azhar, S., Anson, M. and Wong, Y.L. (2001), "Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures", Cement Concrete Res., 31(9), 1291-1300. https://doi.org/10.1016/S0008-8846(01)00580-4.
- Poon, C.S., Azhar, S., Anson, M. and Wong, Y.L. (2003), "Performance of metakaolin concrete at elevated temperatures", Cement Concrete Compos., 25(1), 83-89. https://doi.org/10.1016/S0958-9465(01)00061-0.
- Vikhar, P.A. (2016), "Evolutionary algorithms: A critical review and its future prospects", International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), Jalgaon, India, December.
- Sahani, A.K., Samanta, A.K. and Roy, D.K.S. (2019), "Influence of mineral by-products on compressive strength and microstructure of concrete at high temperature", Adv. Concrete Constr., 7(4), 263-275. https://doi.org/https://doi.org/10.12989/acc.2019.7.4.263.
- Salahuddin, H., Nawaz, A., Maqsoom, A., Mehmood, T. and Zeeshan, B.A. (2019), "Effects of elevated temperature on performance of recycled coarse aggregate concrete", Constr. Build. Mater., 202, 415-425. https://doi.org/10.1016/j.conbuildmat.2019.01.011.
- Saltelli, A., Tarantola, S. and Campolongo, F. (2000), "Sensitivity analysis as an ingredient of modeling", Stat. Sci., 15(4), 377-395. http://www.jstor.org/stable/2676831. https://doi.org/10.1214/ss/1009213004
- Sarhat, S.R. and Sherwood, E.G. (2013), "Residual mechanical response of recycled aggregate concrete after exposure to elevated temperatures", J. Mater. Civil Eng., 25(11), 1721-1730. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000719.
- Savva, A., Manita, P. and Sideris, K.K. (2005), "Influence of elevated temperatures on the mechanical properties of blended cement concretes prepared with limestone and siliceous aggregates", Cement Concrete Compos., 27(2), 239-248. https://doi.org/10.1016/j.cemconcomp.2004.02.013.
- Shahmansouri, A.A., Akbarzadeh Bengar, H. and Ghanbari, S. (2020), "Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method", J. Build. Eng., 31, 101326. https://doi.org/10.1016/j.jobe.2020.101326.
- Sharma, P., Wadhwa, A. and Komal, K. (2014), "Analysis of selection schemes for solving an optimization problem in genetic algorithm", Int. J. Comput. Appl., 93(11), 1-3. https://doi.org/10.5120/16256-5714.
- Tang, C.W. (2019), "Residual properties of high-strength fiber reinforced concrete after exposure to high temperatures", Comput. Concrete, 24(1), 63-71. https://doi.org/https://doi.org/10.12989/cac.2019.24.1.063.
- Tufail, M., Shahzada, K., Gencturk, B. and Wei, J. (2017), "Effect of elevated temperature on mechanical properties of limestone, quartzite and granite concrete", Int. J. Concrete Struct. Mater., 11(1), 17-28. https://doi.org/10.1007/s40069-016-0175-2.
- Varona, F.B, Baeza, F.J., Bru, D. and Ivorra, S. (2020), "Nonlinear multivariable model for predicting the steel to concrete bond after high temperature exposure", Constr. Build. Mater., 249, 118713. https://doi.org/10.1016/j.conbuildmat.2020.118713.
- Varona, F.B., Baeza-Brotons, F., Tenza-Abril, A.J., Baeza, F.J. and Banon, L. (2020), "Residual compressive strength of recycled aggregate concretes after high temperature exposure", Mater., 13(8), 1981. https://doi.org/10.3390/MA13081981.
- Wang, Y., Liu, F., Xu, L. and Zhao, H. (2019), "Effect of elevated temperatures and cooling methods on strength of concrete made with coarse and fine recycled concrete aggregates", Constr. Build. Mater., 210, 540-547. https://doi.org/10.1016/j.conbuildmat.2019.03.215.
- Xiao, J. and Konig, G. (2004), "Study on concrete at high temperature in China - An overview", Fire Saf. J., 39(1), 89-103. https://doi.org/10.1016/S0379-7112(03)00093-6.
- Xiao, J. and Zhang, C. (2007), "Fire damage and residual strengths of recycled aggregate concrete", Key Eng. Mater., 348-349, 937-940. https://doi.org/10.4028/www.scientific.net/KEM.348-349.937.
- Xu, Y., Wong, Y.L., Poon, C.S. and Anson, M. (2003), "Influence of PFA on cracking of concrete and cement paste after exposure to high temperatures", Cement Concrete Res., 33(12), 2009-2016. https://doi.org/10.1016/S0008-8846(03)00216-3.
- Yonggui, W., Shuaipeng, L., Hughes, P. and Yuhui, F. (2020), "Mechanical properties and microstructure of basalt fibre and nano-silica reinforced recycled concrete after exposure to elevated temperatures", Constr. Build. Mater., 247, 118561. https://doi.org/10.1016/j.conbuildmat.2020.118561.
- Yu, Y., Li, W., Li, J. and Nguyen, T.N. (2018), "A novel optimised self-learning method for compressive strength prediction of high performance concrete", Constr. Build. Mater., 184, 229-247. https://doi.org/10.1016/j.conbuildmat.2018.06.219.
- Zamanian, S., Terranova, B. and Shafieezadeh, A. (2020), "Significant variables affecting the performance of concrete panels impacted by wind-borne projectiles: A global sensitivity analysis", Int. J. Impact Eng., 144, 103650. https://doi.org/https://doi.org/10.1016/j.ijimpeng.2020.103650.
- Zega, C.J., Antonio, A. and Maio, D. (2009), "Recycled concrete made with different natural coarse aggregates exposed to high temperature", Constr. Build. Mater., 23(5), 2047-2052. https://doi.org/10.1016/j.conbuildmat.2008.08.017.
- Zega, C.J. and Di Maio, A .A. (2006), "Recycled concrete exposed to high temperatures", Mag. Concrete Res., 9831(10), 675-682. https://doi.org/https://doi.org/10.1680/macr.2006.58.10.675.