과제정보
The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (Project No. 51578431 and 51978545).
참고문헌
- Attanasi, G. and Auricchio, F. (2011), "Innovative superelastic isolation device", J. Earthq. Eng., 15(S1), 72-89. https://doi.org/10.1080/13632469.2011.562406
- Bae, J.S., Hwang, J.H., Roh, J.H. and Kim, J.H. (2012), "Vibration suppression of a cantilever beam using magnetically tunedmass-damper", J. Sound Vib., 331(26), 5669-5684. https://doi.org/10.1016/j.jsv.2012.07.020
- Bortoluzzi, D., Casciati, S., Elia, L. and Faravelli, L. (2015), "Design of a TMD solution to mitigate wind-induced local vibrations in an existing timber footbridge", Smart Struct. Syst., Int. J., 16(3), 459-478. https://doi.org/10.12989/sss.2015.16.3.459
- Carmona, J.E.C., Avila, S.M. and Doz, G. (2017), "Proposal of a tuned mass damper with friction damping to control excessive floor vibrations", Eng. Struct., 148, 81-100. https://doi.org/10.1016/j.engstruct.2017.06.022
- Carreras, G., Casciati, F., Casciati, S., Isalgue, A., Marzi, A. and Torra, V. (2011), "Fatigue laboratory tests toward the design of SMA portico-braces", Smart Struct. Syst., Int. J., 7(1), 41-57. https://doi.org/10.12989/sss.2011.7.1.041
- Casciati, S. (2019), "SMA-based devices: insight across recent proposals toward civil engineering applications", Smart Struct. Syst., Int. J., 24(1), 111-125. https://doi.org/10.12989/sss.2019.24.1.111
- Casciati, F. and Giuliano, F. (2009), "Performance of multi-TMD in the towers of suspension bridges", J. Vib. Control, 15(6), 821-847. https://doi.org/10.1177/1077546308091455
- Casciati, F., Faravelli, L. and Al, S.R. (2009), "An SMA passive device proposed within the highway bridge benchmark", Struct. Control Health Monit., 16(6), 657-667. https://doi.org/10.1002/stc.332
- Chen, J.D., Lu, G.T., Li, Y.R., Wang, T., Wang, W.X. and Song, G. (2017), "Experimental study on robustness of an eddy current-tuned mass damper", Appl. Sci., 7(9), 895. https://doi.org/10.3390/app7090895
- Chung, L.L., Wu, L.Y., Huang, H.H., Chang, C.H. and Lien, K.H. (2009), "Optimal design theories of tuned mass dampers with nonlinear viscous damping", Earthq. Eng. Eng. Vib., 8(4), 547-560. https://doi.org/10.1007/s11803-009-9115-3
- Den Hartog, J.P. (1956), Mechanical Vibrations, McGraw-Hill, New York, NY, USA.
- Ding, J.C., Huang, B., Lv, H.W. and Wan, H.X. (2020), "Parametric study of SMA helical spring braces for the seismic resistance of a frame structure", Smart Struct. Syst., Int. J., 25(3), 311-322. https://doi.org/10.12989/sss.2020.25.3.311
- Enemark, S., Santos, I.F. and Savi, M.A. (2016), "Modelling, characterisation and uncertainties of stabilised pseudoelastic shape memory alloy helical springs", J. Intell. Mater. Syst. Struct., 27(20), 2721-2743. https://doi.org/10.1177/1045389X16635845
- Fang, C., Wang, W., Ji Y.Z. and Yam, M.C.H. (2021), "Superior low-cycle fatigue performance of iron-based SMA for seismic damping application", J. Constr. Steel Res., 184, 106817. https://doi.org/10.1016/j.jcsr.2021.106817
- Hashemi, Y.M., Kadkhodaei, M. and Mohammadzadeh, M.R. (2019), "Fatigue Analysis of Shape Memory Alloy Helical Springs", Int. J. Mech. Sci., 161-162, 105059. https://doi.org/10.1016/j.ijmecsci.2019.105059
- Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F. and Yao, J.T.P. (1997), "Structural control: Past, present, and future", J. Eng. Mech., 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
- Huang, B., Zhang, H.Y., Wang, H. and Song, G. (2014), "Passive base isolation with superelastic nitinol SMA helical springs", Smart Mater. Struct., 23(6), 065009. https://doi.org/10.1088/0964-1726/23/6/065009
- Huang, B., Lao, Y.M., Chen, J.M. and Song, Y. (2018), "Dynamic response analysis of a frame structure with superelastic nitinol SMA helical spring braces for vibration reduction", J. Aerosp. Eng., 31(6), 04018096. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000923
- Huang, B., Lv, H.W. and Song, Y. (2019), "Numerical simulation and experimental study of a simplified force-displacement relationship in superelastic SMA helical springs", Sensors, 19(1), 50. https://doi.org/10.3390/s19010050
- Jiang, J.W., Ho, S.C.M., Markle, N.J., Wang, N. and Song, G. (2019), "Design and control performance of a frictional tuned mass damper with bearing-shaft assemblies", J. Vib. Control, 25(12), 1812-1822. https://doi.org/10.1177/1077546319832429
- Li, H.N., Liu, M.M. and Fu, X. (2018), "An innovative recentering SMA-lead damper and its application to steel frame structures", Smart Mater. Struct., 27(7), 075029. https://doi.org/10.1088/1361-665X/aac28f
- Liu, S.T., Lu, Z., Li, P.Z., Zhang, W.Y. and Taciroglu, E. (2020), "Effectiveness of particle tuned mass damper devices for pile-supported multi-story frames under seismic excitations", Struct. Control Health Monit., 27(11), e2627. https://doi.org/10.1002/stc.2627
- Lu, X.L. and Chen, J.R. (2011), "Mitigation of wind-induced response of Shanghai Center Tower by tuned mass damper", Struct. Des. Tall Spec. Build., 20(4), 435-452. https://doi.org/10.1002/tal.659
- Lu, Z., Li, K. and Zhou, Y. (2018), "Comparative studies on structures with a tuned mass damper and a particle damper", J. Aerosp. Eng., 31(6), 04018090. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000878
- Lv, H.W. (2019), "Experimental study and theoretical analysis of SMAS-TMD system in vibration control of structure", M.S. Dissertation; Wuhan University of Technology, Wuhan, China.
- Mishra, S.K., Gur, S. and Chakraborty, S. (2013), "An improved tuned mass damper (SMA-TMD) assisted by a shape memory alloy spring", Smart Mater. Struct., 22(9), 095016. https://doi.org/10.1088/0964-1726/22/9/095016
- Motahari, S.A. and Ghassemieh, M. (2007), "Multilinear one-dimensional shape memory material model for use in structural engineering applications", Eng. Struct., 29(6), 904-913. https://doi.org/10.1016/j.engstruct.2006.06.007
- Ozbulut, O.E., Hurlebaus, S. and Desroches, R. (2011), "Seismic response control using shape memory alloys: a review", J. Intell. Mater. Syst. Struct., 22(14), 1531-1549. https://doi.org/10.1177/1045389X11411220
- Qian, H., Li, H.N. and Song, G. (2016), "Experimental investigations of building structure with a superelastic shape memory alloy friction damper subject to seismic loads", Smart Mater. Struct., 25(12), 125026. https://doi.org/10.1088/0964-1726/25/12/125026
- Qiu, C.X. and Zhu, S.Y. (2017), "Shake table test and numerical study of self-centering steel frame with SMA braces", Earthq. Eng. Struct. Dyn., 46(1), 117-137. https://doi.org/10.1002/eqe.2777
- Sedlak, P., Frost, M., Kruisova, A., Hirmanova, K., Heller, L. and Sittner, P. (2014), "Simulations of Mechanical Response of Superelastic NiTi Helical Spring and its Relation to Fatigue Resistance", J. Mater. Eng. Perform., 23(7), 2591-2598. https://doi.org/10.1007/s11665-014-0906-y
- Sherif, M.M. and Ozbulut, O.E. (2018), "Tensile and superelastic fatigue characterization of NiTi shape memory cables", Smart Mater. Struct., 27(1), 015007. https://doi.org/10.1088/1361-665X/aa9819
- Song, G., Ma, N. and Li. H.N. (2006), "Applications of shape memory alloys in civil structures", Eng. Struct., 28(9), 1266-1274. https://doi.org/10.1016/j.engstruct.2005.12.010
- Soong, T.T. and Spencer, B.F. (2002), "Supplemental energy dissipation: state-of-the-art and state-of-the-practice", Eng. Struct., 24(3), 243-259. https://doi.org/10.1016/S0141-0296(01)00092-X
- Speicher, M.S., Hodgson, D.E., Desroches, R. and Leon, R. (2009), "Shape memory alloy tension/compression device for seismic retrofit of buildings", J. Mater. Eng. Perform., 18(5-6), 746-753. https://doi.org/10.1007/s11665-009-9433-7
- Tian, L., Zhou, M.Y., Qiu, C.X., Pan, H.Y. and Rong, K.J. (2020), "Seismic response control of transmission tower-line system using SMA-based TMD", Struct. Eng. Mech., Int. J., 74(1), 129-143. https://doi.org/10.12989/sem.2020.74.1.129
- Wang, W.X., Yang, Z.L., Hua, X.G., Chen, Z.Q., Wang, X.Y. and Song, G. (2021), "Evaluation of a pendulum pounding tuned mass damper for seismic control of structures", Eng. Struct., 228, 111554. https://doi.org/10.1016/j.engstruct.2020.111554
- Weber, F. (2014), "Semi-active vibration absorber based on realtime controlled MR damper", Mech. Syst. Signal Proc., 46(3), 272-288. https://doi.org/10.1016/j.ymssp.2014.01.017
- Weber, F. and Maslanka, M. (2014), "Precise stiffness and damping emulation with MR dampers and its application to semi-active tuned mass dampers of Wolgograd Bridge", Smart Mater. Struct., 23(1), 015019. https://doi.org/10.1088/0964-1726/23/1/015019
- Wong, K.K.F. and Harris, J.L. (2012), "Seismic damage and fragility analysis of structures with tuned mass dampers based on plastic energy", Struct. Des. Tall Spec. Build., 21(4), 296-310. https://doi.org/10.1002/tal.604
- Wu, Q.Y., Dai, J.Z. and Zhu, H.P. (2018), "Optimum design of passive control devices for reducing the seismic response of twin-tower-connected structures", J. Earthq. Eng., 22(5), 826-860. https://doi.org/10.1080/13632469.2016.1264332
- Yang, Y.Z. and Li, C.X. (2017), "Performance of tuned tandem mass dampers for structures under the ground acceleration", Struct. Control Health Monit., 24(10), e1974. https://doi.org/10.1002/stc.1974
- Zhang, P., Song, G., Li, H.N. and Lin, Y.X. (2013), "Seismic Control of Power Transmission Tower Using Pounding TMD", J. Eng. Mech., 139(10), 1395-1406. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000576
- Zhou, P., Liu, M., Li, H. and Song, G. (2018), "Experimental investigations on seismic control of cable-stayed bridges using shape memory alloy self-centering dampers", Struct. Control Health Monit., 25(7), e2180. https://doi.org/10.1002/stc.2180