DOI QR코드

DOI QR Code

A review on the effect of marble waste on properties of green concrete

  • Rachid Djebien (LMGHU laboratory, Department of Civil Engineering, University 20 August 1955 – Skikda) ;
  • Amel Bouabaz (LMGHU laboratory, Department of Civil Engineering, University 20 August 1955 – Skikda) ;
  • Yassine Abbas (LMGHU laboratory, Department of Civil Engineering, University 20 August 1955 – Skikda) ;
  • Yasser N. Ziada (Department of Civil Engineering, University of Souk Ahras)
  • Received : 2021.05.16
  • Accepted : 2023.02.04
  • Published : 2023.01.25

Abstract

All production and consumption activities produce wastes, which often cause damage to our environment and multiple risks to the human health. The valorization of these wastes in concrete technology is a future solution that will allow finding other construction materials sources, optimizing energy consumption and protecting the environment. Among these wastes, there is the marble waste. Every year, huge amount of marble waste is discarded as dust or aggregates form, in open-air storage areas causing serious problems for the environment and public health. In this context, the incorporation of marble waste as a replacement of ordinary aggregates or cement in concrete composition is actively investigated by researchers. This paper presents a comprehensive review of published studies over the last 20 years, dealing the effect of marble waste on fresh and hardened properties of concrete. Most of the studies carried out have used marble waste as dust with substitution rates between 5 and 20%. Besides the economic and ecological benefits, this review showed that marble waste can improve the physical, mechanical and durability properties of concrete. This improvement depends on the form (dust, fine aggregate or coarse aggregate), substitution method (as cement or aggregates replacement) and substitution rate of marble waste. Additionally, the review results showed that the use of 10-15% of marble waste dust as cement substitution can lead to increase the compressive strength.

Keywords

References

  1. Agarwal, S.K. and Gulati, D. (2006), "Utilization of industrial wastes and unprocessed micro-fillers for making cost effective mortars", Constr. Build. Mater., 20, 999-1004. https://doi.org/10.1016/j.conbuildmat.2005.06.009
  2. Ali, A.A. and Hashmi, S.M. (2014), "An experimental investigation on strengths characteristics of concrete with the partial replacement of cement by marble powder dust and sand by stone dust", Int. J. Sci. Res. Dev., 02(07), 360-368.
  3. Aliabdo, A.A., Abd Elmoaty, A.E.M. and Auda, E.M. (2014), "Reuse of waste marble dust in the production of cement and concrete", Constr. Build. Mater., 50, 28-41. https://doi.org/10.1016/j.conbuildmat.2013.09.005
  4. Andre, A., de Brito, J., Rosa, A. and Pedro, D. (2014), "Durability performance of concrete incorporating coarse aggregates from marble industry waste", J. Clean. Prod., 65, 389-396. https://doi.org/10.1016/j.jclepro.2013.09.037
  5. Anitha Selvasofia, S.D., Dinesh A. and Sarath Babu V. (2020), "Investigation of waste marble powder in the development of sustainable concrete", Mater. Today, 44(6), 4223-4226. https://doi.org/10.1016/j.matpr.2020.10.536
  6. Anwar, A., Ahmad, J., Khan, M.A., Ahmad, S. and Ahmad, S.A. (2014), "Study of compressive strength of concrete by partial replacement of cement with marble dust powder", Int. J. Mech. Eng. Robot, 2(3), 1-4.
  7. Alyamac, K.E. and Ince, R. (2009), "A preliminary concrete mix design for SCC with marble powders", Constr. Build. Mater., 23, 1201-1210. https://doi.org/10.1016/j.conbuildmat.2008.08.012
  8. Arel, H.S. (2016), "Recyclability of waste marble in concrete production", J. Clean. Prod., 131, 179-188. http://dx.doi.org/10.1016/j.jclepro.2016.05.052
  9. Aruntas, H.Y., Guru, M., Dayi, M. and Tekin, I. (2010), Utilization of waste marble dust as an additive in cement production, Mater. Des., 31, 39-42. https://doi.org/10.1016/j.matdes.2010.03.036
  10. Ashish, D.K. (2018), "Feasibility of waste marble powder in concrete as partial substitution of cement and sand amalgam for sustainable growth", J. Build. Eng., 15, 236-242. https://doi.org/10.1016/j.jobe.2017.11.024
  11. Aydin, E. and Arel, H.S. (2019), "High-volume marble substitution in cement-paste: towards a better sustainability", J. Clean. Prod., 237, 117801. https://doi.org/10.1016/j.jclepro.2019.117801
  12. Baboo, R., Khan, N.H., Abhishek, K., Rushad, S.T. and Duggal, S.K. (2011), "Influence of Marble powder/granules in Concrete mix", Int. J. Civ. Struct. Eng., 1(4), 827-834.
  13. Bacarji, E., Toledo Filho, R.D., Koenders, E.A.B., Figueiredo, E.P. and Lopes, J.L.M.P. (2013), "Sustainability perspective of marble and granite residues as concrete fillers", Constr. Build. Mater., 45, 1-10. http://dx.doi.org/10.1016/j.conbuildmat.2013.03.032
  14. Benjeddou, O., Alyousef, R., Mohammadhosseini, H., Soussi, S., Khadimallah, M.A., Alabduljabbar, H. and Tahir, M.M. (2020), "Utilisation of waste marble powder as low-cost cementing materials in the production of mortar", J. Build. Eng., 32, 101642. https://doi.org/10.1016/j.jobe.2020.101642
  15. Binici, B. and Aksogan, O. (2018), "Durability of concrete made with natural granular granite, silica sand and powders of waste marble and basalt as fine aggregate", J. Build. Eng., 19, 109-121. https://doi.org/10.1016/j.jobe.2018.04.022
  16. Binici, B., Kaplan, H. and Yilmaz, S. (2007), "Influence of marble and limestone dusts as additives on some mechanical properties of concrete", Sci. Res. Essays, 2(9), 372-379.
  17. Binici, B., Shah, T., Aksogan, O. and Kaplan, H. (2008), "Durability of concrete made with granite and marble as recycle aggregates", J. Mater. Process. Technol., 208, 299-308. https://doi.org/10.1016/j.jmatprotec.2007.12.120
  18. Bostanci, S.C. (2020), "Use of waste marble dust and recycled glass for sustainable concrete production", J. Clean. Prod., 251, 119785. https://doi.org/10.1016/j.jclepro.2019.119785
  19. Chawla, A., Syed Ahmed Kabeer, K.I. and Vyas, A.K. (2018), "Evaluation of strength and durability of lean concrete mixes containing marble waste as fine aggregate", Eur. J. Environ. Civil Eng., 24, 1398-1413. https://doi.org/10.1080/19648189.2018.1471009
  20. Corinaldesi, V., Moriconi, G. and Naik, T.R. (2010), "Characterization of marble powder for its use in mortar and concrete", Constr. Build. Mater., 24, 113-117. https://doi.org/10.1016/j.conbuildmat.2009.08.013
  21. Demirel, B. (2010), "The effect of the using waste marble dust as fine sand on the mechanical properties of the concrete", Int. J. Phys. Sci., 5(9), 1372-1380.
  22. Djebien, R., Belachia, M. and Hebhoub, H. (2015), "Effect of marble waste fines on rheological and hardened properties of sand concrete", Struct. Eng. Mech., Int. J., 53(6), 1241-1251. https://doi.org/10.12989/sem.2015.53.6.1241
  23. Djebien, R., Hebhoub, H., Belachia, M., Berdoudi, S. and Kherraf, L. (2018), "Incorporation of marble waste as sand in formulation of self-compacting concrete", Struct. Eng. Mech., Int. J., 67(1), 87-91. https://doi.org/10.12989/sem.2018.67.1.087
  24. Ergun, A. (2011), "Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete", Constr. Build. Mater., 25, 806-812. https://doi.org/10.1016/j.conbuildmat.2010.07.002
  25. Gameiro, F., de Brito, J. and Correia da Silva, D. (2014), "Durability performance of structural concrete containing fine aggregates from waste generated by marble quarrying industry", Eng. Struct., 59, 654-662. http://dx.doi.org/10.1016/j.engstruct.2013.11.026
  26. Elyamany, H.E., Abd Elmoaty, A.M. and Basma, M. (2014), "Effect of filler types on physical, mechanical and microstructure of self compacting concrete and Flow-able concrete", Alex. Eng. J., 53(2), 295-307. http://dx.doi.org/10.1016/j.aej.2014.03.010
  27. Gesoglu, M., Guneyisi, E., Kocabag, M.E., Bayram, V. and Mermerdas, K. (2012), "Fresh and hardened characteristics of self compacting concretes made with combined use of marble powder, limestone filler, and fly ash", Constr. Build. Mater., 37, 160-170. http://dx.doi.org/10.1016/j.conbuildmat.2012.07.092
  28. Hebhoub, H., Aoun, H., Belachia, M., Houari, H. and Ghorbel, E. (2011), "Use of waste marble aggregates in concrete", Constr. Build. Mater., 25, 1167-1171. https://doi.org/10.1016/j.conbuildmat.2010.09.037
  29. Ince, C., Hamza, A., Derogar, S. and Ball, R.J. (2020), "Utilisation of waste marble dust for improved durability and cost efficiency of pozzolanic concrete", J. Clean. Prod., 270, 122213. https://doi.org/10.1016/j.jclepro.2020.122213
  30. Jain, N. (2012), "Effect of nonpozzolanic and pozzolanic mineral admixtures on the hydration behavior of ordinary Portland cement", Constr. Build. Mater., 27, 39-44. https://doi.org/10.1016/j.conbuildmat.2011.08.006
  31. Kabeer, K.I.S.A. and Vyas, K.A. (2018), "Utilization of marble powder as fine aggregate in mortar mixes", Constr. Build. Mater., 165, 321-332. https://doi.org/10.1016/j.conbuildmat.2018.01.061
  32. Kechagia, P., Koutroumpi, D., Bartzas, G., Peppas, A., Samouhos, M., Deligiannis, S. and Tsakiridis, P.E. (2021), "Waste marble dust and recycled glass valorization in the production of ternary blended cements", Sci. Total. Environ., 761, 143224. https://doi.org/10.1016/j.scitotenv.2020.143224
  33. Kelestemur, O., Arici, E, Yildiz, S. and Gokcer, B. (2014), "Performance evaluation of cement mortars containing marble dust and glass fiber exposed to high temperature by using Taguchi method", Constr. Build. Mater., 60, 17-24. http://dx.doi.org/10.1016/j.conbuildmat.2014.02.061
  34. Khyaliya, R.K., Kabeer, K.I.S.A. and Vyas, A.K. (2017), "Evaluation of strength and durability of lean mortar mixes containing marble waste", Constr. Build. Mater., 147, 598-607. http://dx.doi.org/10.1016/j.conbuildmat.2017.04.199
  35. Khodabakhshian, A., De Brito, J., Ghalehnovi, M. and Shamsabadi, E.A. (2018a), "Mechanical, environmental and economic performance of structural concrete containing silica fume and marble industry waste powder", Constr. Build. Mater., 169, 237-251. https://doi.org/10.1016/j.conbuildmat.2018.02.192
  36. Khodabakhshian, A., Ghalehnovi, M. De Brito, J. and Shamsabadi, E.A. (2018b), "Durability performance of structural concrete containing silica fume and marble industry waste powder", Constr. Build. Mater., 170, 42-60. https://doi.org/10.1016/j.jclepro.2017.09.116
  37. Kirgiz, M.S. (2016), "Fresh and hardened properties of green binder concrete containing marble powder and brick powder", Eur. J. Environ. Civil Eng., 20(1), 1-38. http://dx.doi.org/10.1080/19648189.2016.1246692
  38. Kore, S.D. and Vyas, A.K. (2016a), "Cost effective design of sustainable concrete using marble waste as coarse aggregate", J. Mater. Eng. Struct., 3, 167-180. https://doi.org/10.34118/jbms.v3i2.24
  39. Kore, S.D. and Vyas, A.K. (2016b), "Impact of marble waste as coarse aggregate on properties of lean cement concrete", Case Stud. Constr. Mater., 4, 85-92. http://dx.doi.org/10.1016/j.cscm.2016.01.002
  40. Kumar, V., Singla, S. and Garg, R. (2020), "Strength and microstructure correlation of binary cement blends in presence of waste marble powder", Mater. Today, 43(2), 857-862. https://doi.org/10.1016/j.matpr.2020.07.073
  41. Li, L.G., Huang, Z.H., Tan, Y.P., Kwan, A.K.H. and Liu, F. (2018), "Use of marble dust as paste replacement for recycling waste and improving durability and dimensional stability of mortar", Constr. Build. Mater., 166, 423-431. https://doi.org/10.1016/j.conbuildmat.2018.01.154
  42. Mashaly, A.O, El-Kaliouby, B.A., Shalaby, B.N. and ElGohary, A.M. and Rashwan, M.A. (2016), "Effects of marble sludge incorporation on the properties of cement composites and concrete paving blocks", J. Clean. Prod., 112(1), 731-741. https://doi.org/10.1016/j.jclepro.2015.07.023
  43. Munir, M.J., Kazmi, S.M.S. and Wu, Y.F. (2017), "Efficiency of waste marble powder in controlling alkali-silica reaction of concrete: A sustainable approach", Constr. Build. Mater., 154, 590-599. http://dx.doi.org/10.1016/j.conbuildmat.2017.08.002
  44. Omar, O.M., AbdElhameed, G.D., Sherif, M.A. and Mohamadien, H.A. (2012), "Influence of limestone waste as partial replacement material for sand and marble powder in concrete properties", HBRC Journal, 8, 193-203. http://dx.doi.org/10.1016/j.hbrcj.2012.10.005
  45. Rana, A., Kalla, P. and Csetenyi, L.J. (2015), "Sustainable Use of Marble Slurry in Concrete", J. Clean. Prod., 94, 304-311. https://doi.org/10.1016/j.jclepro.2015.01.053
  46. Rashwan, M.A., Al-Basiony, T.M., Mashaly, A.O. and Khalil, M.M. (2020), "Behaviour of fresh and hardened concrete incorporating marble and granite sludge as cement replacement", J. Build. Eng., 32, 101697. https://doi.org/10.1016/j.jobe.2020.101697
  47. Rodrigues, R., de Brito, J. and Sardinha, M. (2015), "Mechanical properties of structural concrete containing very fine aggregates from marble cutting sludge", Constr. Build. Mater., 77, 349-356. http://dx.doi.org/10.1016/j.conbuildmat.2014.12.104
  48. Ruiz-Sanchez, A., Sanchez-Polo, M. and Rozalen, M. (2019), "Waste marble dust: An interesting residue to produce cement", Constr. Build. Mater., 224, 99-108. https://doi.org/10.1016/j.conbuildmat.2019.07.031
  49. Sadek, D.M., El-Attar, M.M. and Ali, H.A. (2016), "Reusing of marble and granite powders in self-compacting concrete for sustainable development", J. Clean. Prod., 121, 19-32. https://doi.org/10.1016/j.jclepro.2016.02.044
  50. Sardinha, M., de Brito, J. and Rodrigues, R. (2016), "Durability properties of structural concrete containing very fine aggregates of marble sludge", Constr. Build. Mater., 119, 45-52. http://dx.doi.org/10.1016/j.conbuildmat.2016.05.071
  51. Seghir, N.T., Mellas, M., Sadowski, L. and Zak, A. (2018), "Effects of marble powder on the properties of the air-cured blended cement paste", J. Clean. Prod., 183, 858-868. https://doi.org/10.1016/j.jclepro.2018.01.267
  52. Singh, M., Srivastava, A. and Bhunia, D. (2017), "An investigation on effect of partial replacement of cement by waste marble slurry", Constr. Build. Mater., 134, 471-488. http://dx.doi.org/10.1016/j.conbuildmat.2016.12.155
  53. Singh, M., Srivastava, A. and Bhunia, D. (2019), "Long term strength and durability parameters of hardened concrete on partially replacing cement by dried waste marble powder slurry", Constr. Build. Mater., 198, 553-569. https://doi.org/10.1016/j.conbuildmat.2018.12.005
  54. Tennich, M., Kallel, K. and Ben Ouezdou, M. (2015), "Incorporation of fillers from marble and tile wastes in the composition of self-compacting concretes", Constr. Build. Mater., 91, 65-70. https://doi.org/10.1016/j.jobe.2018.06.015
  55. Tennich, M., Ben Ouezdou, M. and Kallel, K. (2017), "Behavior of self-compacting concrete made with marble and tile wastes exposed to external sulfate attack", Constr. Build. Mater., 135, 335-342. https://doi.org/10.1016/j.jobe.2018.06.015
  56. Tennich, M., Ben Ouezdou, M. and Kallel, K. (2018), "Thermal effect of marble and tile fillers on self compacting concrete behavior in the fresh state and at early age", J. Build. Eng., 20, 1-7. https://doi.org/10.1016/j.jobe.2018.06.015
  57. Topcu, I.B., Bilir, T. and Uygunoglu, T. (2009), "Effect of waste marble dust content as filler on properties of self-compacting concrete", Constr. Build. Mater., 23, 1947-1953. https://doi.org/10.1016/j.conbuildmat.2008.09.007
  58. Uygunoglu, T., Topcu, I.B. and Celik, A.G. (2014), "Use of waste marble and recycled aggregates in self-compacting concrete for environmental sustainability", J. Clean. Prod., 84, 691-700. http://dx.doi.org/10.1016/j.jclepro.2014.06.019
  59. Uysal, M. and Sumer, M. (2011), "Performance of self-compacting concrete containing different mineral admixtures", Constr. Build. Mater., 25, 4112-4120. https://doi.org/10.1016/j.conbuildmat.2011.04.032
  60. Uysal, M. and Yilmaz, K. (2011), "Effect of mineral admixtures on properties of self-compacting concrete", Cem. Concrete Compos., 25, 4112-4120. https://doi.org/10.1016/j.conbuildmat.2011.04.032
  61. Uysal, M., Yilmaz, K. and Ipek, I. (2012), "The effect of mineral admixtures on mechanical properties, chloride ion permeability and impermeability of self-compacting concrete", Constr. Build. Mater., 27, 263-270. https://doi.org/10.1016/j.conbuildmat.2011.07.049
  62. Varadharajan, S. (2020), "Determination of mechanical properties and environmental impact due to inclusion of fly ash and marble waste powder in concrete", Struct., 25, 613-630. https://doi.org/10.1016/j.istruc.2020.03.040
  63. Vardhan, K., Goyal, S., Siddique, R. and Singh, M. (2015), "Mechanical properties and microstructural analysis of cement mortar incorporating marble powder as partial replacement of cement", Constr. Build. Mater., 96, 615-261. http://dx.doi.org/10.1016/j.conbuildmat.2015.08.071
  64. Vardhan, K., Siddique, R. and Goyal, S. (2019a), "Strength, permeation and micro-structural characteristics of concrete incorporating waste marble", Constr. Build. Mater., 203, 45-55. https://doi.org/10.1016/j.conbuildmat.2019.01.079
  65. Vardhan, K., Siddique, R. and Goyal, S. (2019b), "Influence of marble waste as partial replacement of fine aggregates on strength and drying shrinkage of concrete", Constr. Build. Mater., 228, 116730. https://doi.org/10.1016/j.conbuildmat.2019.116730
  66. Xi, Y., Anastasiou, E., Karozou, K. and Silvestri, S. (2019), "Fresh and hardened properties of cement mortars using marble sludge fines and cement sludge fines", Constr. Build. Mater., 220, 142-148. https://doi.org/10.1016/j.conbuildmat.2019.05.153
  67. Zhang, S., Cao, K., Wang, C., Wang, X., Wang, J. and Sun, B. (2020), "Effect of silica fume and waste marble powder on the mechanical and durability properties of cellular concrete", Constr. Build. Mater., 241, 117980. https://doi.org/10.1016/j.conbuildmat.2019.117980