DOI QR코드

DOI QR Code

Anti-corrosion impact of green synthesis of Silica nanoparticles for the sports structures in physical exercise activities

  • Zhixin Zhang (College of Physical Education, Langfang Normal University) ;
  • Zhiqiang Cai (College of Physical Education, Langfang Normal University) ;
  • Khidhair Jasim Mohammed (Air conditioning and Refrigeration Techniques Engineering Department, Al-Mustaqbal University College ) ;
  • H. Elhosiny Ali (Research Center for Advanced Materials Science (RCAMS), King Khalid University)
  • 투고 : 2022.10.14
  • 심사 : 2023.01.29
  • 발행 : 2023.01.25

초록

Sport has no age limit and can be done anywhere and in any condition with minimal equipment. The existence of sports spaces in all parts of the world is considered a citizen's right. One of the activities carried out in this field is installing sports equipment and structures in parks and encouraging citizens to use this equipment for physical health with the least cost and facilities. Installing sports structures in open spaces such as parks is a practical step for developing citizens' sports. Although using devices in parks is acceptable, it is more critical to meet scientific and technical standards. The components of these structures must have high strength and endurance against changes in environmental conditions such as humidity, temperature difference, and corrosion. Among the various causes of material degradation, corrosion has always been one of several fundamental causes of metal equipment failure. Sports structures in open spaces are not safe from corrosion. Uniform corrosion is the most common type of corrosion. This corrosion usually occurs uniformly through a chemical or electrochemical reaction across the surface exposed to the corrosive environment. Rust and corrosion of outdoor sports structures are examples of this corrosion. For this reason, in this research, with the green synthesis of silica nanoparticles and its application in outdoor sports structures, the life span of these structures can be increased for the use of physical exercises as well as their quality.

키워드

참고문헌

  1. Alao, A.O., Popoola, A.P. and Sanni, O. (2022), "The Influence of Nanoparticle Inhibitors on the Corrosion Protection of Some Industrial Metals: A Review", J. Bio- Tribo-Corros., 8(3), 68. https://doi.org/10.1007/s40735-022-00665-1
  2. Bender, R. and Schutze, M. (2003), "The role of alloying elements in commercial alloys for corrosion resistance in oxidizing-chloridizing atmospheres. Part I: Literature evaluation and thermodynamic calculations on phase stabilities", Mater. Corros., 54(8), 567-586. https://doi.org/10.1002/maco.200390129
  3. Dembelova, T., Badmaev, B., Makarova, D., Mashanov, A. and Mishigdorzhiyn, U. (2023), "Rheological and Tribological Study of Polyethylsiloxane with SiO2 Nanoparticles Additive", Lubricants, 11(9), p. 9. https://doi.org/10.3390/lubricants11010009
  4. Dinh, H.T., Kuever, J., Mussmann, M., Hassel, A.W., Stratmann, M. and Widdel, F. (2004), "Iron corrosion by novel anaerobic microorganisms", Nature, 427(6977), 829-832. https://doi.org/10.1038/nature02321
  5. Dong, H., Lin, F., Boccaccini, A.R. and Virtanen, S. (2021), "Corrosion behavior of biodegradable metals in two different simulated physiological solutions: Comparison of Mg, Zn and Fe", Corros. Sci., 182, 109278. https://doi.org/10.1016/j.corsci.2021.109278
  6. Du, L., Chen, J., Hu, E. and Zeng, F. (2022), "A reactive molecular dynamics simulation study on corrosion behaviors of carbon steel in salt spray", Computat. Mater. Sci., 203, 111142. https://doi.org/10.1016/j.commatsci.2021.111142
  7. El-Lateef, H.M.A., El-Dabea, T., Khalaf, M.M. and Abu-Dief, A.M. (2022), "Innovation of Imine Metal Chelates as Corrosion Inhibitors at Different Media: A Collective Study", Int. J. Molecul. Sci., 23(16), 9360. https://doi.org/10.3390/ijms23169360
  8. Elsener, B. (2002), "Macrocell corrosion of steel in concrete - implications for corrosion monitoring", Cement Concrete Compos., 24(1), 65-72. https://doi.org/10.1016/S0958-9465(01)00027-0
  9. Fan, W. (2022), "Research on the Influence of New High-performance Fiber Materials in Tennis Sports", Forest Chemicals Review, pp. 895-900. http://www.forestchemicalsreview.com/index.php/JFCR/article/view/601
  10. Gourgaud, S. and Elliott, D. (1977), "Semiconductor/Electrolyte Photoelectric Energy Conversion: The Use of a Molydenum Oxide Coating to Avoid Corrosion", J. Electrochem. Soc., 124(1), 102. https://doi.org/10.1149/1.2133221
  11. Guo, X., Vullum, P.E. and Venvik, H.J. (2021), "Inhibition of metal dusting corrosion on Fe-based alloy by combined near surface severe plastic deformation (NS-SPD) and thermochemical treatment", Corros. Sci., 190, 109702. https://doi.org/10.1016/j.corsci.2021.109702
  12. Harsimran, S., Santosh, K. and Rakesh, K. (2021), "Overview of corrosion and its control: A critical review", Proc. Eng. Sci., 3, 13-24. https://doi.org/10.24874/PES03.01.002
  13. Huang, Y., Xu, D., Huang, L.Y., Lou, Y.T., Muhadesi, J.B., Qian, H.C., Zhou, E.Z., Wang, B.J., Li, X.T., Jiang, Z. and Liu, S.J. (2021), "Responses of soil microbiome to steel corrosion", npj Biofilms and Microbiomes, 7(1), 6. https://doi.org/10.1038/s41522-020-00175-3
  14. Kutlymuratova, G.A. (2022), "Ecological Features and Agrotechnology of Growing Atropa Belladonna l. and Echinops Ritro L in the Conditions of Karakalpakstan", J. Pharmaceut. Negat. Results, pp. 2400-2404. https://doi.org/10.47750/pnr.2022.13.S08.297
  15. Li, C., Wang, J. and Yu, Q. (2022), "Efficiency Analysis and Utilization of College Sports Equipment Based on Intelligent Computing", J. Sensors, 2022, 7497555. https://doi.org/10.1155/2022/7497555
  16. Mojaddami, A., Chamkouri, H., Chamkouri, N., Koolivand, Z. and Panahimehr, M. (2023), "Green synthesis of silicon dioxide nanoparticles and L arginine@ silicon dioxide nano-composites using cellulose of Zizyphus Spina-Christi along with biological evaluation", Bull. Chem. Soc. Ethiopia, 37(2), 265-276. https://doi.org/10.4314/bcse.v37i2.2
  17. Momoh, A., Adams, F.V., Samuel, O., Bolade, O.P. and Olubambi, P.A. (2022), Corrosion Prevention; The Use of Nanomaterials, Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-85555-0_5
  18. Rahimzadeh, C.Y., Barzinjy, A.A., Mohammed, A.S. and Hamad, S.M. (2022), "Green synthesis of SiO2 nanoparticles from Rhus coriaria L. extract: Comparison with chemically synthesized SiO2 nanoparticles", Plos One, 17(8), e0268184. https://doi.org/10.1371/journal.pone.0268184
  19. Ribeiro, M.M., Andrade, A. and Nunes, I. (2022), "Physical exercise in pregnancy: Benefits, risks and prescription", J. Perinat. Medic., 50(1), 4-17. https://doi.org/10.1515/jpm-2021-0315
  20. Shaw, B. and Kelly, R. (2006), "What is Corrosion?", Electrochem. Soc. Interf., 15(1), 24. https://doi.org/10.1149/2.F06061IF
  21. Tamura, H. (2008), "The role of rusts in corrosion and corrosion protection of iron and steel", Corros. Sci., 50(7), 1872-1883. https://doi.org/10.1016/j.corsci.2008.03.008
  22. Touir, R., Dkhireche, N., Ebn Touhami, M., Sfaira, M., Senhaji, O., Robin, J.J., Boutevin, B. and Cherkaoui, M. (2010), "Study of phosphonate addition and hydrodynamic conditions on ordinary steel corrosion inhibition in simulated cooling water", Mater. Chem. Phys., 122(1), 1-9. https://doi.org/10.1016/j.matchemphys.2010.02.063
  23. Tyagi, P.K., Sharma, S., Tyagi, S., Mishra, A. and Gola, D. (2022), "Toxicity assessment of silica nanoparticles, and their conjugates with curcumin on Drosophila melanogaster", Environ. Nanotechnol. Monitor. Manage., 17, 100616. https://doi.org/10.1016/j.enmm.2021.100616
  24. Varshney, S., Nigam, A., Pawar, S.J. and Mishra, N. (2022), "An overview on biomedical applications of versatile silica nanoparticles, synthesized via several chemical and biological routes: A review", Phosphorus Sulfur Silicon Related Elem., 197(2), 72-88. https://doi.org/10.1080/10426507.2021.2017434
  25. Verma, C. and Quraishi, M.A. (2022), "Nanotechnology in the service of corrosion science: considering graphene and derivatives as examples", Corros. Eng. Sci. Technol., 57(6), 580-597. https://doi.org/10.1080/1478422X.2022.2093690
  26. Wang, Q., Liu, B., Shen, Y., Wu, J., Zhao, Z., Zhong, C. and Hu, W. (2021), "Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries", Adv. Sci., 8(17), 2101111. https://doi.org/10.1002/advs.202101111
  27. Wirtanen, T., Prenzel, T., Tessonnier, J.-P. and Waldvogel, S.R. (2021), "Cathodic corrosion of metal electrodes-how to prevent it in electroorganic synthesis", Chem. Rev., 121(17), 10241-10270. https://doi.org/10.1021/acs.chemrev.1c00148
  28. Yadav, M., Dwibedi, V., Sharma, S. and George, N. (2022), "Biogenic silica nanoparticles from agro-waste: Properties, mechanism of extraction and applications in environmental sustainability", J. Environ. Chem. Eng., 10(6), 108550. https://doi.org/10.1016/j.jece.2022.108550
  29. Zhao, X., Jiang, D., Ma, L., Zeng, X., Li, Z. and Huang, G. (2022), "Corrosion Effects and Smart Coatings of Corrosion Protection", Special Issue: Coatings, 12(10), p. 1378. https://doi.org/10.3390/coatings12101378
  30. Zitouni-Nourine, S.H., Belyagoubi-Benhammou, N., El-Houaria Zitouni-Haouar, F., Douahi, O., Chenafi, F., Fetati, H., Chabane Sari, S., Benmahieddine, A., Zaoui, C., Mekaouche, F.Z., Atik Bekkara, F., Kambouche, N., Gismondi, A. and Toumi, H. (2022), "Echinops spinosissimus Turra Root Methanolic Extract: Characterization of the Bioactive Components and Relative Wound Healing, Antimicrobial and Antioxidant Properties", Plants, 11(24), p. 3440. https://doi.org/10.3390/plants11243440