과제정보
This work was supported by Samsung Electronics Co., Ltd (IO211203-09222-01).
참고문헌
- Agrawal, V.M. and Savoika, P.P. (2021), "Optimization of binary and ternary concrete composed of fly ash and ultra-fine slag using GRA", Adv. Concr. Constr., Int. J., 12(4), 283-294. https://doi.org/10.12989/acc.2021.12.4.283
- Alemu, A.S., Lee, B.Y., Park, S. and Kim, H.-K. (2022), "Self-healing of Portland and slag cement binder systems incorporating circulating fluidized bed combustion bottom ash", Constr. Build. Mater., 314, 125571. https://doi.org/10.1016/j.conbuildmat.2021.125571
- ASTM C109 / C109M-16a (2016), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), ASTM International, West Conshohocken, PA, USA. www.astm.org
- ASTM C1585-20 (2020), Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes, ASTM International, West Conshohocken, PA, USA. www.astm.org
- Cook, R.A. and Hover, K.C. (1999), "Mercury porosimetry of hardened cement pastes", Cem. Concr. Res., 29(6), 933-943. https://doi.org/10.1016/S0008-8846(99)00083-6
- Elahi, M.M.A., Shearer, C.R., Reza, A.N.R., Saha, A.K., Khan, M.N.N., Hossain, M.M. and Sarker, P.K. (2021), "Improving the sulfate attack resistance of concrete by using supplementary cementitious materials (SCMs): A review", Constr. Build. Mater., 281, 122628. https://doi.org/10.1016/j.conbuildmat.2021.122628
- Farhana, Z., Kamarudin, H., Rahmat, A. and Al Bakri, A. (2015), "The relationship between water absorption and porosity for geopolymer paste", In: Materials Science Forum, Vol. 803, pp. 166-172. https://doi.org/10.4028/www.scientific.net/MSF.803.166
- Gao, C.L., Zhou, Z.Q., Yang, W.M., Lin, C.J., Li, L.P. and Wang, J. (2019), "Model test and numerical simulation research of water leakage in operating tunnels passing through intersecting faults", Tunnell. Undergr. Space Technol., 94, 103134. https://doi.org/10.1016/j.tust.2019.103134
- Gwon, S., Ahn, E. and Shin, M. (2019), "Self-healing of modified sulfur composites with calcium sulfoaluminate cement and superabsorbent polymer", Compos. B. Eng., 162, 469-483. https://doi.org/10.1016/j.compositesb.2019.01.003
- Huang, H., Ye, G. and Damidot, D. (2014), "Effect of blast furnace slag on self-healing of microcracks in cementitious materials", Cem. Concr. Res., 60, 68-82. https://doi.org/10.1016/j.cemconres.2014.03.010
- Kim, H., Son, H., Seo, J. and Lee, H.-K. (2020), "Impact of bio-carrier immobilized with marine bacteria on self-healing performance of cement-based materials", Materials, 13(18), 4164. https://doi.org/10.3390/ma13184164
- Kumar, V.P. and Prasad, D.R. (2019), "Influence of supplementary cementitious materials on strength and durability characteristics of concrete", Adv. Concr. Cnostr., Int. J., 7(2), 75-85. https://doi.org/10.12989/acc.2019.7.2.075
- Kuosa, H., Ferreira, R.M., Holt, E., Leivo, M. and Vesikari, E. (2014), "Effect of coupled deterioration by freeze-thaw, carbonation and chlorides on concrete service life", Cem. Concr. Compos., 47, 32-40. https://doi.org/10.1016/j.cemconcomp.2013.10.008
- Lafuente, B., Downs, R.T., Yang, H. and Stone, N. (2015), "The power of databases: the RRUFF project", In: Highlights in Mineralogical Crystallography, (T. Armbruster and R.M. Danisi, eds.), Berlin, Germany, W. De Gruyter, pp. 1-30.
- Lothenbach, B., Scrivener, K. and Hooton, R.D. (2011), "Supplementary cementitious materials", Cem. Concr. Res., 41(12), 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001
- Luo, M., Qian, C.X. and Li, R.Y. (2015), "Factors affecting crack repairing capacity of bacteria-based self-healing concrete", Constr. Build. Mater., 87, 1-7. https://doi.org/10.1016/j.conbuildmat.2015.03.117
- Ma, H. (2014), "Mercury intrusion porosimetry in concrete technology: tips in measurement, pore structure parameter acquisition and application", J. Porous Mater., 21(2), 207-215. https://doi.org/10.1007/s10934-013-9765-4
- Martin, L.H.J., Winnefeld, F., Muller, C.J. and Lothenbach, B. (2015), "Contribution of limestone to the hydration of calcium sulfoaluminate cement", Cem. Concr. Compos., 62, 204-211. https://doi.org/10.1016/j.cemconcomp.2015.07.005
- Mehdipour, I., Zoughi, R. and Khayat, K.H. (2018), "Feasibility of using near-field microwave reflectometry for monitoring autogenous crack healing in cementitious materials", Cem. Concr. Compos., 85, 161-173. https://doi.org/10.1016/j.cemconcomp.2017.10.014
- Mitchell, D., Hinczak, I. and Day, R. (1998), "Interaction of silica fume with calcium hydroxide solutions and hydrated cement pastes", Cem. Concr. Res., 28(11), 1571-1584. https://doi.org/10.1016/S0008-8846(98)00133-1
- Mohammadi, M., Youssef-Namnoum, C., Robira, M. and Hilloulin, B. (2020), "Self-healing potential and phase evolution characterization of ternary cement blends", Materials, 13(11), 2543. https://doi.org/10.3390/ma13112543
- Namnoum, C.Y., Hilloulin, B., Grondin, F. and Loukili, A. (2021), "Determination of the origin of the strength regain after self-healing of binary and ternary cementitious materials including slag and metakaolin", J. Build. Eng., 41, 102739. https://doi.org/10.1016/j.jobe.2021.102739
- Park, H., Jeong, Y., Jun, Y., Jeong, J.-H. and Oh, J.E. (2016), "Strength enhancement and pore-size refinement in clinker-free CaO-activated GGBFS systems through substitution with gypsum", Cem. Concr. Compos., 68, 57-65. https://doi.org/10.1016/j.cemconcomp.2016.02.008
- Ramli, M., Tabassi, A.A. and Hoe, K.W. (2013), "Porosity, pore structure and water absorption of polymer-modified mortars: An experimental study under different curing conditions", Compos. B. Eng., 55, 221-233. https://doi.org/10.1016/j.compositesb.2013.06.022
- Richards, J. (1998), "Inspection, maintenance and repair of tunnels: international lessons and practice", Tunnelling and Underground Space Technology, 13(4), 369-375. https://doi.org/10.1016/S0886-7798(98)00079-0
- Roig-Flores, M., Moscato, S., Serna, P. and Ferrara, L. (2015), "Self-healing capability of concrete with crystalline admixtures in different environments", Constr. Build. Mater., 86, 1-11. https://doi.org/10.1016/j.conbuildmat.2015.03.091
- Sahmaran, M., Yildirim, G. and Erdem, T.K. (2013), "Self-healing capability of cementitious composites incorporating different supplementary cementitious materials", Cem. Concr. Compos., 35(1), 89-101. https://doi.org/10.1016/j.cemconcomp.2012.08.013
- Samad, S. and Shah, A. (2017), "Role of binary cement including Supplementary Cementitious Material (SCM), in production of environmentally sustainable concrete: A critical review", Int. J. Sustain. Built Environ., 6(2), 663-674. https://doi.org/10.1016/j.ijsbe.2017.07.003
- Scholer, A., Lothenbach, B., Winnefeld, F., Haha, M.B., Zajac, M. and Ludwig, H.-M. (2017), "Early hydration of SCM-blended Portland cements: A pore solution and isothermal calorimetry study", Cem. Concr. Res., 93, 71-82. https://doi.org/10.1016/j.cemconres.2016.11.013
- Seo, J.H., Park, S.M. and Lee, H.K. (2018), "Evolution of the binder gel in carbonation-cured Portland cement in an acidic medium", Cem. Concr. Res., 109, 81-89. https://doi.org/10.1016/j.cemconres.2018.03.014
- Seo, J., Park, S., Yoon, H.N., Jang, J.G., Kim, S.H. and Lee, H.-K. (2019), "Utilization of calcium carbide residue using granulated blast furnace slag", Materials, 12(21), 3511. https://doi.org/10.3390/ma12213511
- Seo, J., Park, S., Yoon, H.N. and Lee, H.-K. (2020), "Effect of CaO incorporation on the microstructure and autogenous shrinkage of ternary blend Portland cement-slag-silica fume", Constr. Build. Mater., 249, 118691. https://doi.org/10.1016/j.conbuildmat.2020.118691
- Seo, J., Kim, S., Park, S., Yoon, H.N. and Lee, H.-K. (2021), "Carbonation of calcium sulfoaluminate cement blended with blast furnace slag", Cem. Concr. Compos., 118, 103918. https://doi.org/10.1016/j.cemconcomp.2020.103918
- Seo, J., Yoon, H., Kim, S., Wang, Z., Kil, T. and Lee, H.-K. (2021), "Characterization of reactive MgO-modified calcium sulfoaluminate cements upon carbonation", Cem. Concr. Res., 146, 106484. https://doi.org/10.1016/j.cemconres.2021.106484
- Shafigh, P., Yousuf, S., Ibrahim, Z., Alsubari, B. and Asadi, I. (2021), "Influence of fly ash and GGBFS on the pH value of cement mortar in different curing conditions", Adv. Concr. Cnostr., Int. J., 11(5), 419-428. https://doi.org/10.12989/acc.2021.11.5.419
- Sisomphon, K., Copuroglu, O. and Koenders, E. (2012), "Self-healing of surface cracks in mortars with expansive additive and crystalline additive", Cem. Concr. Compos., 34(4), 566-574. https://doi.org/10.1016/j.cemconcomp.2012.01.005
- Snellings, R., Chwast, J., Cizer, O., De Belie, N., Dhandapani, Y., Durdzinski, P., Elsen, J., Haufe, J., Hooton, D. and Patapy, C. (2018), "RILEM TC-238 SCM recommendation on hydration stoppage by solvent exchange for the study of hydrate assemblages", Mater. Struct., 51(6), 1-4. https://doi.org/10.1617/s11527-018-1298-5
- Suleiman, A.R., Nelson, A.J. and Nehdi, M.L. (2019), "Visualization and quantification of crack self-healing in cement-based materials incorporating different minerals", Cem. Concr. Compos., 103, 49-58. https://doi.org/10.1016/j.cemconcomp.2019.04.026
- Tchekwagep, J., Zhao, P., Wang, S., Huang, S. and Cheng, X. (2021), "The impact of changes in pore structure on the compressive strength of sulphoaluminate cement concrete at high temperature", Mater. Sci.-Poland, 39(1), 75-85. https://doi.org/10.2478/msp-2021-0006
- Termkhajornkit, P., Nawa, T., Yamashiro, Y. and Saito, T. (2009), "Self-healing ability of fly ash-cement systems", Cem. Concr. Compos., 31(3), 195-203. https://doi.org/10.1016/j.cemconcomp.2008.12.009
- Van Tittelboom, K., Gruyaert, E., Rahier, H. and De Belie, N. (2012), "Influence of mix composition on the extent of autogenous crack healing by continued hydration or calcium carbonate formation", Constr. Build. Mater., 37, 349-359. https://doi.org/10.1016/j.conbuildmat.2012.07.026
- Winnefeld, F. and Lothenbach, B. (2010), "Hydration of calcium sulfoaluminate cements - Experimental findings and thermodynamic modelling", Cem. Concr. Res., 40(8), 1239-1247. https://doi.org/10.1016/j.cemconres.2009.08.014
- Winnefeld, F., Martin, L.H.J., Muller, C.J. and Lothenbach, B. (2017), "Using gypsum to control hydration kinetics of CSA cements", Constr. Build. Mater., 155, 154-163. https://doi.org/10.1016/j.conbuildmat.2017.07.217
- Wu, Z., Shi, C., Khayat, K.H. and Xie, L. (2018), "Effect of SCM and nano-particles on static and dynamic mechanical properties of UHPC", Constr. Build. Mater., 182, 118-125. https://doi.org/10.1016/j.conbuildmat.2018.06.126
- Xue, C., Li, W., Li, J. and Wang, K. (2019), "Numerical investigation on interface crack initiation and propagation behaviour of self-healing cementitious materials", Cem. Concr. Res., 122, 1-16. https://doi.org/10.1016/j.cemconres.2019.04.012
- Yoon, H., Park, S.M. and Lee, H.-K. (2018), "Effect of MgO on chloride penetration resistance of alkali-activated binder", Constr. Build. Mater., 178, 584-592. https://doi.org/10.1016/j.conbuildmat.2018.05.156
- Yoon, H.N., Seo, J., Kim, S., Lee, H.-K. and Park, S. (2021), "Hydration of calcium sulfoaluminate cement blended with blast-furnace slag", Constr. Build. Mater., 268, 121214. https://doi.org/10.1016/j.conbuildmat.2020.121214
- Yu, P. and Kirkpatrick, R. (1999), "Thermal dehydration of tobermorite and jennite", Concrete Sci. Eng., 1(3), 185-191.
- Zhang, W., Zheng, Q., Ashour, A. and Han, B. (2020), "Self-healing cement concrete composites for resilient infrastructures: A review", Compos. B. Eng., 189, 107892. https://doi.org/10.1016/j.compositesb.2020.107892