DOI QR코드

DOI QR Code

Physicochemical properties and autogenous healing performance of ternary blended binders composed of OPC-BFS-CSA clinker

  • H.N. Yoon (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Joonho Seo (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Naru Kim (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • H.M. Son (Device Solutions, Samsung Electronics) ;
  • H.K. Lee (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2022.08.22
  • Accepted : 2023.01.09
  • Published : 2023.01.25

Abstract

Autogenous healing of concrete can be helpful in structural maintenance by healing cracks using a healing material created by the precipitation of calcite and by the hydration of unhydrated binder around the cracks. Against this backdrop, this study investigated the physicochemical properties and autogenous healing performance of ternary blended binder composed of ordinary Portland cement (OPC), blast furnace slag (BFS), and calcium sulfoaluminate (CSA) clinker. Ternary blended binders with various contents of OPC-BFS-CSA clinker were prepared, and their physicochemical properties and autogenous healing performances were examined using various analytical techniques and visually observed using a microscope. The obtained results indicated that increase in the BFS content accompanied the increased the amount of unreacted BFS even after 28 days of curing and had a positive effect on the autogenous healing performance due to its latent hydration. However, replacing the CSA clinker did not increase the autogenous healing performance owing to an insufficient sulfate source for the formation of ettringite. The main precipitates around the cracks were calcite, C-S-H. Other hydration products such as portlandite, monosulfate, and ettringite, which were not found in the Raman and scanning electron microscope analyses.

Keywords

Acknowledgement

This work was supported by Samsung Electronics Co., Ltd (IO211203-09222-01).

References

  1. Agrawal, V.M. and Savoika, P.P. (2021), "Optimization of binary and ternary concrete composed of fly ash and ultra-fine slag using GRA", Adv. Concr. Constr., Int. J., 12(4), 283-294. https://doi.org/10.12989/acc.2021.12.4.283 
  2. Alemu, A.S., Lee, B.Y., Park, S. and Kim, H.-K. (2022), "Self-healing of Portland and slag cement binder systems incorporating circulating fluidized bed combustion bottom ash", Constr. Build. Mater., 314, 125571. https://doi.org/10.1016/j.conbuildmat.2021.125571 
  3. ASTM C109 / C109M-16a (2016), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), ASTM International, West Conshohocken, PA, USA. www.astm.org 
  4. ASTM C1585-20 (2020), Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes, ASTM International, West Conshohocken, PA, USA. www.astm.org 
  5. Cook, R.A. and Hover, K.C. (1999), "Mercury porosimetry of hardened cement pastes", Cem. Concr. Res., 29(6), 933-943. https://doi.org/10.1016/S0008-8846(99)00083-6 
  6. Elahi, M.M.A., Shearer, C.R., Reza, A.N.R., Saha, A.K., Khan, M.N.N., Hossain, M.M. and Sarker, P.K. (2021), "Improving the sulfate attack resistance of concrete by using supplementary cementitious materials (SCMs): A review", Constr. Build. Mater., 281, 122628. https://doi.org/10.1016/j.conbuildmat.2021.122628 
  7. Farhana, Z., Kamarudin, H., Rahmat, A. and Al Bakri, A. (2015), "The relationship between water absorption and porosity for geopolymer paste", In: Materials Science Forum, Vol. 803, pp. 166-172. https://doi.org/10.4028/www.scientific.net/MSF.803.166 
  8. Gao, C.L., Zhou, Z.Q., Yang, W.M., Lin, C.J., Li, L.P. and Wang, J. (2019), "Model test and numerical simulation research of water leakage in operating tunnels passing through intersecting faults", Tunnell. Undergr. Space Technol., 94, 103134. https://doi.org/10.1016/j.tust.2019.103134 
  9. Gwon, S., Ahn, E. and Shin, M. (2019), "Self-healing of modified sulfur composites with calcium sulfoaluminate cement and superabsorbent polymer", Compos. B. Eng., 162, 469-483. https://doi.org/10.1016/j.compositesb.2019.01.003 
  10. Huang, H., Ye, G. and Damidot, D. (2014), "Effect of blast furnace slag on self-healing of microcracks in cementitious materials", Cem. Concr. Res., 60, 68-82. https://doi.org/10.1016/j.cemconres.2014.03.010 
  11. Kim, H., Son, H., Seo, J. and Lee, H.-K. (2020), "Impact of bio-carrier immobilized with marine bacteria on self-healing performance of cement-based materials", Materials, 13(18), 4164. https://doi.org/10.3390/ma13184164 
  12. Kumar, V.P. and Prasad, D.R. (2019), "Influence of supplementary cementitious materials on strength and durability characteristics of concrete", Adv. Concr. Cnostr., Int. J., 7(2), 75-85. https://doi.org/10.12989/acc.2019.7.2.075 
  13. Kuosa, H., Ferreira, R.M., Holt, E., Leivo, M. and Vesikari, E. (2014), "Effect of coupled deterioration by freeze-thaw, carbonation and chlorides on concrete service life", Cem. Concr. Compos., 47, 32-40. https://doi.org/10.1016/j.cemconcomp.2013.10.008 
  14. Lafuente, B., Downs, R.T., Yang, H. and Stone, N. (2015), "The power of databases: the RRUFF project", In: Highlights in Mineralogical Crystallography, (T. Armbruster and R.M. Danisi, eds.), Berlin, Germany, W. De Gruyter, pp. 1-30.
  15. Lothenbach, B., Scrivener, K. and Hooton, R.D. (2011), "Supplementary cementitious materials", Cem. Concr. Res., 41(12), 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001 
  16. Luo, M., Qian, C.X. and Li, R.Y. (2015), "Factors affecting crack repairing capacity of bacteria-based self-healing concrete", Constr. Build. Mater., 87, 1-7. https://doi.org/10.1016/j.conbuildmat.2015.03.117 
  17. Ma, H. (2014), "Mercury intrusion porosimetry in concrete technology: tips in measurement, pore structure parameter acquisition and application", J. Porous Mater., 21(2), 207-215. https://doi.org/10.1007/s10934-013-9765-4 
  18. Martin, L.H.J., Winnefeld, F., Muller, C.J. and Lothenbach, B. (2015), "Contribution of limestone to the hydration of calcium sulfoaluminate cement", Cem. Concr. Compos., 62, 204-211. https://doi.org/10.1016/j.cemconcomp.2015.07.005 
  19. Mehdipour, I., Zoughi, R. and Khayat, K.H. (2018), "Feasibility of using near-field microwave reflectometry for monitoring autogenous crack healing in cementitious materials", Cem. Concr. Compos., 85, 161-173. https://doi.org/10.1016/j.cemconcomp.2017.10.014 
  20. Mitchell, D., Hinczak, I. and Day, R. (1998), "Interaction of silica fume with calcium hydroxide solutions and hydrated cement pastes", Cem. Concr. Res., 28(11), 1571-1584. https://doi.org/10.1016/S0008-8846(98)00133-1 
  21. Mohammadi, M., Youssef-Namnoum, C., Robira, M. and Hilloulin, B. (2020), "Self-healing potential and phase evolution characterization of ternary cement blends", Materials, 13(11), 2543. https://doi.org/10.3390/ma13112543 
  22. Namnoum, C.Y., Hilloulin, B., Grondin, F. and Loukili, A. (2021), "Determination of the origin of the strength regain after self-healing of binary and ternary cementitious materials including slag and metakaolin", J. Build. Eng., 41, 102739. https://doi.org/10.1016/j.jobe.2021.102739 
  23. Park, H., Jeong, Y., Jun, Y., Jeong, J.-H. and Oh, J.E. (2016), "Strength enhancement and pore-size refinement in clinker-free CaO-activated GGBFS systems through substitution with gypsum", Cem. Concr. Compos., 68, 57-65. https://doi.org/10.1016/j.cemconcomp.2016.02.008 
  24. Ramli, M., Tabassi, A.A. and Hoe, K.W. (2013), "Porosity, pore structure and water absorption of polymer-modified mortars: An experimental study under different curing conditions", Compos. B. Eng., 55, 221-233. https://doi.org/10.1016/j.compositesb.2013.06.022 
  25. Richards, J. (1998), "Inspection, maintenance and repair of tunnels: international lessons and practice", Tunnelling and Underground Space Technology, 13(4), 369-375. https://doi.org/10.1016/S0886-7798(98)00079-0 
  26. Roig-Flores, M., Moscato, S., Serna, P. and Ferrara, L. (2015), "Self-healing capability of concrete with crystalline admixtures in different environments", Constr. Build. Mater., 86, 1-11. https://doi.org/10.1016/j.conbuildmat.2015.03.091 
  27. Sahmaran, M., Yildirim, G. and Erdem, T.K. (2013), "Self-healing capability of cementitious composites incorporating different supplementary cementitious materials", Cem. Concr. Compos., 35(1), 89-101. https://doi.org/10.1016/j.cemconcomp.2012.08.013 
  28. Samad, S. and Shah, A. (2017), "Role of binary cement including Supplementary Cementitious Material (SCM), in production of environmentally sustainable concrete: A critical review", Int. J. Sustain. Built Environ., 6(2), 663-674. https://doi.org/10.1016/j.ijsbe.2017.07.003 
  29. Scholer, A., Lothenbach, B., Winnefeld, F., Haha, M.B., Zajac, M. and Ludwig, H.-M. (2017), "Early hydration of SCM-blended Portland cements: A pore solution and isothermal calorimetry study", Cem. Concr. Res., 93, 71-82. https://doi.org/10.1016/j.cemconres.2016.11.013 
  30. Seo, J.H., Park, S.M. and Lee, H.K. (2018), "Evolution of the binder gel in carbonation-cured Portland cement in an acidic medium", Cem. Concr. Res., 109, 81-89. https://doi.org/10.1016/j.cemconres.2018.03.014 
  31. Seo, J., Park, S., Yoon, H.N., Jang, J.G., Kim, S.H. and Lee, H.-K. (2019), "Utilization of calcium carbide residue using granulated blast furnace slag", Materials, 12(21), 3511. https://doi.org/10.3390/ma12213511 
  32. Seo, J., Park, S., Yoon, H.N. and Lee, H.-K. (2020), "Effect of CaO incorporation on the microstructure and autogenous shrinkage of ternary blend Portland cement-slag-silica fume", Constr. Build. Mater., 249, 118691. https://doi.org/10.1016/j.conbuildmat.2020.118691 
  33. Seo, J., Kim, S., Park, S., Yoon, H.N. and Lee, H.-K. (2021), "Carbonation of calcium sulfoaluminate cement blended with blast furnace slag", Cem. Concr. Compos., 118, 103918. https://doi.org/10.1016/j.cemconcomp.2020.103918 
  34. Seo, J., Yoon, H., Kim, S., Wang, Z., Kil, T. and Lee, H.-K. (2021), "Characterization of reactive MgO-modified calcium sulfoaluminate cements upon carbonation", Cem. Concr. Res., 146, 106484. https://doi.org/10.1016/j.cemconres.2021.106484 
  35. Shafigh, P., Yousuf, S., Ibrahim, Z., Alsubari, B. and Asadi, I. (2021), "Influence of fly ash and GGBFS on the pH value of cement mortar in different curing conditions", Adv. Concr. Cnostr., Int. J., 11(5), 419-428. https://doi.org/10.12989/acc.2021.11.5.419 
  36. Sisomphon, K., Copuroglu, O. and Koenders, E. (2012), "Self-healing of surface cracks in mortars with expansive additive and crystalline additive", Cem. Concr. Compos., 34(4), 566-574. https://doi.org/10.1016/j.cemconcomp.2012.01.005 
  37. Snellings, R., Chwast, J., Cizer, O., De Belie, N., Dhandapani, Y., Durdzinski, P., Elsen, J., Haufe, J., Hooton, D. and Patapy, C. (2018), "RILEM TC-238 SCM recommendation on hydration stoppage by solvent exchange for the study of hydrate assemblages", Mater. Struct., 51(6), 1-4. https://doi.org/10.1617/s11527-018-1298-5 
  38. Suleiman, A.R., Nelson, A.J. and Nehdi, M.L. (2019), "Visualization and quantification of crack self-healing in cement-based materials incorporating different minerals", Cem. Concr. Compos., 103, 49-58. https://doi.org/10.1016/j.cemconcomp.2019.04.026 
  39. Tchekwagep, J., Zhao, P., Wang, S., Huang, S. and Cheng, X. (2021), "The impact of changes in pore structure on the compressive strength of sulphoaluminate cement concrete at high temperature", Mater. Sci.-Poland, 39(1), 75-85. https://doi.org/10.2478/msp-2021-0006 
  40. Termkhajornkit, P., Nawa, T., Yamashiro, Y. and Saito, T. (2009), "Self-healing ability of fly ash-cement systems", Cem. Concr. Compos., 31(3), 195-203. https://doi.org/10.1016/j.cemconcomp.2008.12.009 
  41. Van Tittelboom, K., Gruyaert, E., Rahier, H. and De Belie, N. (2012), "Influence of mix composition on the extent of autogenous crack healing by continued hydration or calcium carbonate formation", Constr. Build. Mater., 37, 349-359. https://doi.org/10.1016/j.conbuildmat.2012.07.026 
  42. Winnefeld, F. and Lothenbach, B. (2010), "Hydration of calcium sulfoaluminate cements - Experimental findings and thermodynamic modelling", Cem. Concr. Res., 40(8), 1239-1247. https://doi.org/10.1016/j.cemconres.2009.08.014 
  43. Winnefeld, F., Martin, L.H.J., Muller, C.J. and Lothenbach, B. (2017), "Using gypsum to control hydration kinetics of CSA cements", Constr. Build. Mater., 155, 154-163. https://doi.org/10.1016/j.conbuildmat.2017.07.217 
  44. Wu, Z., Shi, C., Khayat, K.H. and Xie, L. (2018), "Effect of SCM and nano-particles on static and dynamic mechanical properties of UHPC", Constr. Build. Mater., 182, 118-125. https://doi.org/10.1016/j.conbuildmat.2018.06.126 
  45. Xue, C., Li, W., Li, J. and Wang, K. (2019), "Numerical investigation on interface crack initiation and propagation behaviour of self-healing cementitious materials", Cem. Concr. Res., 122, 1-16. https://doi.org/10.1016/j.cemconres.2019.04.012 
  46. Yoon, H., Park, S.M. and Lee, H.-K. (2018), "Effect of MgO on chloride penetration resistance of alkali-activated binder", Constr. Build. Mater., 178, 584-592. https://doi.org/10.1016/j.conbuildmat.2018.05.156 
  47. Yoon, H.N., Seo, J., Kim, S., Lee, H.-K. and Park, S. (2021), "Hydration of calcium sulfoaluminate cement blended with blast-furnace slag", Constr. Build. Mater., 268, 121214. https://doi.org/10.1016/j.conbuildmat.2020.121214 
  48. Yu, P. and Kirkpatrick, R. (1999), "Thermal dehydration of tobermorite and jennite", Concrete Sci. Eng., 1(3), 185-191.
  49. Zhang, W., Zheng, Q., Ashour, A. and Han, B. (2020), "Self-healing cement concrete composites for resilient infrastructures: A review", Compos. B. Eng., 189, 107892. https://doi.org/10.1016/j.compositesb.2020.107892