DOI QR코드

DOI QR Code

A numerical application of Bayesian optimization to the condition assessment of bridge hangers

  • X.W. Ye (Department of Civil Engineering, Zhejiang University) ;
  • Y. Ding (Department of Civil Engineering, Zhejiang University) ;
  • P.H. Ni (Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology)
  • Received : 2022.01.13
  • Accepted : 2022.08.24
  • Published : 2023.01.25

Abstract

Bridge hangers, such as those in suspension and cable-stayed bridges, suffer from cumulative fatigue damage caused by dynamic loads (e.g., cyclic traffic and wind loads) in their service condition. Thus, the identification of damage to hangers is important in preserving the service life of the bridge structure. This study develops a new method for condition assessment of bridge hangers. The tension force of the bridge and the damages in the element level can be identified using the Bayesian optimization method. To improve the number of observed data, the additional mass method is combined the Bayesian optimization method. Numerical studies are presented to verify the accuracy and efficiency of the proposed method. The influence of different acquisition functions, which include expected improvement (EI), probability-of-improvement (PI), lower confidence bound (LCB), and expected improvement per second (EIPC), on the identification of damage to the bridge hanger is studied. Results show that the errors identified by the EI acquisition function are smaller than those identified by the other acquisition functions. The identification of the damage to the bridge hanger with various types of boundary conditions and different levels of measurement noise are also studied. Results show that both the severity of the damage and the tension force can be identified via the proposed method, thereby verifying the robustness of the proposed method. Compared to the genetic algorithm (GA), particle swarm optimization (PSO), and nonlinear least-square method (NLS), the Bayesian optimization (BO) performs best in identifying the structural damage and tension force.

Keywords

Acknowledgement

The work described in this paper was jointly supported by the National Science Foundation of China (Grant Nos. 52178306, 51822810 and 51778574), and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR19E080002).

References

  1. Amabili, M., Carra, S., Collini, L., Garziera, R. and Panno, A. (2010), "Estimation of tensile force in tie-rods using a frequency-based identification method", J. Sound Vib., 329(11), 2057-2067. https://doi.org/10.1016/j.jsv.2009.12.009
  2. Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M. and Inman, D.J. (2020), "A review of vibration-based damage detection in civil structures: From traditional methods to machine learning and deep learning applications", Mech. Syst. Signal. Pr., 147, 107077. https://doi.org/10.1016/j.ymssp.2020.107077
  3. Bayik, B., Omenzetter, P. and Pavlovskaia, E. (2020), "Experimental modelling of a top-tensioned riser for vibration-based damage detection", Eng. Struct., 223, 111139. https://doi.org/10.1016/j.engstruct.2020.111139
  4. Cao, H.Y., Qian, X.D., Chen, Z.J. and Zhu, H.P. (2017), "Layout and size optimization of suspension bridges based on coupled modelling approach and enhanced particle swarm optimization", Eng. Struct., 146, 170-183. https://doi.org/10.1016/j.engstruct.2017.05.048
  5. Cai, Z. and Peng, Z. (2002), "Cooperative coevolutionary adaptive Genetic algorithm in path planning of cooperative multi-mobile robot systems", J. Intell. Robot. Syst., 33(1), 61-71. https://doi.org/10.1023/A:1014463014150
  6. Ceballos, M.A. and Prato, C.A. (2008), "Determination of the axial force on stay cables accounting for their bending stiffness and rotational end restraints by free vibration tests", J. Sound Vib., 317(1-2), 127-141. https://doi.org/10.1016/j.jsv.2008.02.048
  7. Chopra, A.K. (2012), Dynamics of structure", Pearson Education Upper Saddle River, NJ, USA.
  8. Ding, Z., Li, J. and Hao, H. (2020), "Non-probabilistic method to consider uncertainties in structural damage identification based on hybrid jaya and tree seeds algorithm", Eng. Struct., 220, 110925. https://doi.org/10.1016/j.engstruct.2020.110925
  9. Do, B., Ohsaki, M. and Yamakawa, M. (2021), "Bayesian optimization for robust design of steel frames with joint and individual probabilistic constraints", Eng. Struct., 245, 112859. https://doi.org/10.1016/j.engstruct.2021.112859
  10. Gregori, S., Gil, J., Tur, M., Tarancon, J. and Fuenmayor, F. (2020), "Analysis of the overlap section in a high-speed railway catenary by means of numerical simulations", Eng. Struct., 221, 110963. https://doi.org/10.1016/j.engstruct.2020.110963
  11. Gobbato, M., Kosmatka, J.B. and Conte, J.P. (2014), "A recursive bayesian approach for fatigue damage prognosis: An experimental validation at the reliability component level", Mech. Syst. Signal. Pr., 45(2), 448-467. https://doi.org/10.1016/j.ymssp.2013.10.014
  12. Hou, R., Xia, Y. and Zhou, X. (2018), "Structural damage detection based on L1 regularization using natural frequencies and mode shapes", Struct. Control. Health., 25(3), e2107. https://doi.org/10.1002/stc.2107
  13. Hou, R., Beck, J.L., Zhou, X. and Xia, Y. (2021), "Structural damage detection of space frame structures with semi-rigid connections", Eng. Struct., 235, 112029. https://doi.org/10.1016/j.engstruct.2021.112029
  14. Jones, D.R., Schonlau, M. and Welch, W.J. (1998), "Efficient global optimization of expensive black-box functions", J. Global. Optim., 13(4), 455-492. https://doi.org/10.1023/A: 1008306431147
  15. Koh, C. and Shankar, K. (2003), "Substructural identification method without interface measurement", J. Eng. Mech., 129(7), 769-776. https://doi.org/10.1061/(ASCE)0733-9399(2003)129: 7(769)
  16. Kuok, S.C. and Yuen, K.V. (2016), "Investigation of modal identification and modal identifiability of a cable-stayed bridge with Bayesian framework", Smart Struct. Syst., Int. J., 17(3), 445-470. https://doi.org/10.12989/sss.2016.17.3.445
  17. Li, X.Y. and Law, S.S. (2010), "Adaptive Tikhonov regularization for damage detection based on nonlinear model updating", Mech. Syst. Signal. Pr., 24(6), 1646-1664. https://doi.org/10.1016/j.ymssp.2010.02.006
  18. Li, S., Wei, S., Bao, Y. and Li, H. (2018), "Condition assessment of cables by pattern recognition of vehicle-induced cable tension ratio", Eng. Struct., 155, 1-15. https://doi.org/10.1016/j.engstruct.2017.09.063
  19. Liang, X. (2019), "Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization", Comput-Aided Civil Inf., 34(5), 415-430. https://doi.org/10.1111/mice.12425
  20. Lin, S.W., Yi, T.H., Li, H.N. and Ren, L. (2017), "Damage detection in the cable structures of a bridge using the virtual distortion method", J. Bridge Eng., 22(8), 04017039. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001072
  21. Meng, F., Yu, J., Alaluf, D., Mokrani, B. and Preumont, A. (2019), "Modal flexibility based damage detection for suspension bridge hangers: a numerical and experimental investigation", Smart Struct. Syst., Int. J., 23(1), 15-29. https://doi.org/10.12989/sss.2019.23.1.015
  22. Meysam, R. and Omid, B. (2021), "Structural damage identification for elements and connections using an improved genetic algorithm", Smart Struct. Syst., Int. J., 28(5), 643-660. https://doi.org/10.12989/sss.2021.28.5.643
  23. Nazarian, E., Ansari, F., Zhang, X. and Taylor, T. (2016), "Detection of tension loss in cables of cable-stayed bridges by distributed monitoring of bridge deck strains", J. Struct. Eng., 142(6), 04016018. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001463
  24. Pathirage, C.S.N., Li, J., Li, L., Hao, H., Liu, W. and Ni, P. (2018), "Structural damage identification based on autoencoder neural networks and deep learning", Eng. Struct., 172, 13-28. https://doi.org/10.1016/j.engstruct.2018.05.109
  25. Peng, Z., Li, J., Hao, H. and Li, C. (2021), "Nonlinear structural damage detection using output-only volterra series model", Struct. Control. Health., 28(9), e2802. https://doi.org/10.1002/stc.2802
  26. Peng, Z., Li, J. and Hao, H. (2022), "Long-term condition monitoring of cables for in-service cable-stayed bridges using matched vehicle-induced cable tension ratios", Smart Struct. Syst., Int. J., 29(1), 167-179. https://doi.org/10.12989/sss.2022.29.1.167
  27. Pereira, S., Magalhaes, F., Gomes, J.P., Cunha, A. and Lemos, J.V. (2021), "Vibration-based damage detection of a concrete arch dam", Eng. Struct., 235, 112032. https://doi.org/10.1016/j.engstruct.2021.112032
  28. Ren, W.X., Chen, G. and Hu, W.H. (2005), "Empirical formulas to estimate cable tension by cable fundamental frequency", Struct. Eng. Mech., Int. J., 20(3), 363-380. https://doi.org/10.12989/sem.2005.20.3.363
  29. Russell, J.C. and Lardner, T. (1998), "Experimental determination of frequencies and tension for elastic cables", J. Eng. Mech., 124(10), 1067-1072. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:10(1067)
  30. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P. and De Freitas, N. (2015), "Taking the human out of the loop: A review of Bayesian optimization", P. IEEE., 104(1), 148-175. https://doi.org/10.1109/JPROC.2015.2494218
  31. Shiraiwa, T., Enoki, M., Goto, S. and Hiraide, T. (2020), "Data assimilation in the welding process for analysis of weld toe geometry and heat source model", ISIJ Int., 60(6), 1-11. https://doi.org/10.2355/isijinternational.ISIJINT-2019-720
  32. Spanos, P.T. and Chen, T. (1980), "Vibrations of marine riser systems", J. Energ. Resour., 102(4), 203-213. https://doi.org/10.1115/1.3227874
  33. Vereecken, E., Botte, W., Lombaert, G. and Caspeele, R. (2020), "Bayesian decision analysis for the optimization of inspection and repair of spatially degrading concrete structures", Eng. Struct., 220, 111028. https://doi.org/10.1016/j.engstruct.2020.111028
  34. Wan, H.P. and Ni, Y.Q. (2020), "A new approach for interval dynamic analysis of train-bridge system based on Bayesian optimization", J. Eng. Mech., 146(5), 04020029. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001735
  35. Wang, Y., Zhu, X., Hao, H. and Ou, J. (2011), "Spectral element model updating for damage identification using clonal selection algorithm", Adv. Struct. Eng., 14(5), 837-856. https://doi.org/10.1260/1369-4332.14.5.837
  36. Wang, X., Koh, C. and Zhang, J. (2014), "Substructural identification of jack-up platform in time and frequency domains", Appl. Ocean. Res., 44, 53-62. https://doi.org/10.1016/j.apor.2013.09.004
  37. Wang, Z.L., Ogawa, T. and Adachi, Y. (2019), "Influence of algorithm parameters of Bayesian optimization, Genetic algorithm, and Particle Swarm Optimization on their optimization performance", Adv. Theor. Simul., 2(10), 1900110. https://doi.org/10.1002/adts.201900110
  38. Williams, C.K. and Rasmussen, C.E. (2006), "Gaussian processes for machine learning", MIT press Cambridge, MA, USA.
  39. Xie, X. and Li, X.Z. (2014), "Genetic algorithm-based tension identification of hanger by solving inverse eigenvalue problem", Inverse. Probl. Sci. En., 22(6), 966-987. https://doi.org/10.1080/17415977.2013.848432
  40. Xu, Y.L., Zhang, J., Li, J.C. and Xia, Y. (2009), "Experimental investigation on statistical moment-based structural damage detection method", Struct. Health. Monit., 8(6), 555-571. https://doi.org/10.1177/1475921709341011
  41. Xu, Y., Nikitas, G., Zhang, T., Han, Q., Chryssanthopoulos, M., Bhattacharya, S. and Wang, Y. (2020), "Support condition monitoring of offshore wind turbines using model updating techniques", Struct. Health. Monit., 19(4), 1017-1031. https://doi.org/10.1177/1475921719875628
  42. Yao, G.W., Yang, S.C., Zhang, J.Q. and Leng, Y.L. (2021), "Analysis of corrosion-fatigue damage and fracture mechanism of in-service bridge cables/hangers", Adv. Civil Eng., 4, 1-10. https://doi.org/10.1155/2021/6633706
  43. Ye, X.W., Ni, Y.Q., Wong, K. and Ko, J. (2012), "Statistical analysis of stress spectra for fatigue life assessment of steel bridges with structural health monitoring data", Eng. Struct., 45, 166-176. https://doi.org/10.1016/j.engstruct.2012.06.016
  44. Ye, X.W., Ding, Y. and Wan, H.P. (2019), "Machine learning approaches for wind speed forecasting using long-term monitoring data: A comparative study", Smart Struct. Syst., Int. J., 24(6), 733-744. https://doi.org/10.12989/sss.2019.24.6.733
  45. Ye, X.W., Ding, Y. and Wan, H.P. (2021), "Probabilistic forecast of wind speed based on Bayesian emulator using monitoring data", Struct. Control. Health., 28(1), e2650. https://doi.org/10.1002/stc.2650
  46. Yuen, K.V. (2010), Bayesian methods for structural dynamics and civil engineering, Wiley, New York, USA.
  47. Yuen, K.V. and Katafygiotis, L.S. (2010), "Model updating using noisy response measurements without knowledge of the input spectrum", Earthq. Eng. Struct. Dyn., 34(2), 167-187. https://doi.org/10.1002/eqe.415
  48. Zhang, Y.M., Wang, H., Mao, J.X., Xu, Z.D. and Zhang, Y.F. (2021), "Probabilistic framework with Bayesian optimization for predicting Typhoon-induced dynamic responses of a longspan bridge", J. Struct. Eng., 147(1), 04020297. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002881
  49. Zui, H., Shinke, T. and Namita, Y. (1996), "Practical formulas for estimation of cable tension by vibration method", J. Struct. Eng., 122(6), 651-656. https://doi.org/10.1061/(ASCE)0733-9445(1996)122: 6(651)