DOI QR코드

DOI QR Code

Bayesian model update for damage detection of a steel plate girder bridge

  • Xin Zhou (Department of Civil and Earth Resources Engineering, Kyoto University) ;
  • Feng-Liang Zhang (School of Civil and Environmental Engineering, Harbin Institute of Technology) ;
  • Yoshinao Goi (Department of Civil and Earth Resources Engineering, Kyoto University) ;
  • Chul-Woo Kim (Department of Civil and Earth Resources Engineering, Kyoto University)
  • Received : 2021.11.26
  • Accepted : 2022.08.28
  • Published : 2023.01.25

Abstract

This study investigates the possibility of damage detection of a real bridge by means of a modal parameter-based finite element (FE) model update. Field moving vehicle experiments were conducted on an actual steel plate girder bridge. In the damage experiment, cracks were applied to the bridge to simulate damage states. A fast Bayesian FFT method was employed to identify and quantify uncertainties of the modal parameters then these modal parameters were used in the Bayesian model update. Material properties and boundary conditions are taken as uncertainties and updated in the model update process. Observations showed that although some differences existed in the results obtained from different model classes, the discrepancy between modal parameters of the FE model and those experimentally obtained was reduced after the model update process, and the updated parameters in the numerical model were indeed affected by the damage. The importance of boundary conditions in the model updating process is also observed. The capability of the MCMC model update method for application to the actual bridge structure is assessed, and the limitation of FE model update in damage detection of bridges using only modal parameters is observed.

Keywords

Acknowledgement

This study was partly supported by a Japanese Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (B) under project No. 19H02225 and National Natural Science Foundation of China under project No. 52278298. The financial supports are gratefully acknowledged.

References

  1. Ahmadian, H., Mottershead, J.E. and Friswell, M.I. (1998), "Regularisation methods for finite element model updating", Mech. Syst. Signal Process., 12(1), 47-64. https://doi.org/10.1006/mssp.1996.0133
  2. Au, S.K. (2011), "Fast Bayesian FFT method for ambient modal identification with separated modes", J. Eng. Mech., 137(3), 214-226. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000213
  3. Au, S.K. and Beck, J.L. (1999), "A new adaptive importance sampling scheme for reliability calculations", Struct. Safety, 21(2), 135-158. https://doi.org/10.1016/S0167-4730(99)00014-4
  4. Au, S.K., Zhang, F.L. and Ni, Y.C. (2013), "Bayesian operational modal analysis: theory, computation, practice", Comput. Struct, 126, 3-14. https://doi.org/10.1016/j.compstruc.2012.12.015
  5. Bassoli, E., Vincenzi, L., D'Altri, A.M., de Miranda, S., Forghieri, M. and Castellazzi, G. (2018), "Ambient vibration-based finite element model updating of an earthquake-damaged masonry tower", Struct. Control Health Monitor., 25(5), e2150. https://doi.org/10.1002/stc.2150
  6. Beck, J.L. and Au, S.K. (2002), "Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation", J. Eng. Mech., 128(4), 380-391. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:4(380)
  7. Beck, J.L. and Katafygiotis, L.S. (1998), "Updating models and their uncertainties. i: Bayesian statistical framework", J. Eng. Mech., 124(4), 455-461. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(455)
  8. Beck, J.L. and Yuen, K.V. (2004), "Model selection using response measurements: Bayesian probabilistic approach", J. Eng. Mech., 130(2), 192-203. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:2(192)
  9. Brincker, R. and Andersen, P. (2006), "Understanding stochastic subspace identification", Proceedings of the 24th IMAC, St. Louis, Missouri, USA, January.
  10. Carden, E.P. and Fanning, P. (2004), "Vibration based condition monitoring: a review", Struct. Health Monitor., 3(4), 355-377. https://doi.org/10.1177/1475921704047500
  11. Chaudhry, R., Ravichandran, A., Hager, G. and Vidal, R. (2009), "Histograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of human actions", 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, June.
  12. Ching, J. and Chen, Y.C. (2007), "Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging", J. Eng. Mech., 133(7), 816-832. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:7(816)
  13. Friswell, M.I. and Mottershead, J.E. (2013), Finite Element Model Updating in Structural Dynamics, (Vol. 38), Springer Science & Business Media.
  14. Friswell, M.I., Mottershead, J.E. and Ahmadian, H. (1997). "Combining subset selection and parameter constraints in model updating", Proceedings of the ASME 1997 Design Engineering Technical Conferences, Volume 1B: 16th Biennial Conference on Mechanical Vibration and Noise, Sacramento, CA, USA, September.
  15. Goller, B. and Schueller, G.I. (2011), "Investigation of model uncertainties in Bayesian structural model updating", J. Sound Vib., 330(25), 6122-6136. https://doi.org/10.1016/j.jsv.2011.07.036
  16. Goller, B., Broggi, M., Calvi, A. and Schueller, G. (2011), "A stochastic model updating technique for complex aerospace structures", Finite Elem. Anal. Des., 47(7), 739-752. https://doi.org/10.1016/j.finel.2011.02.005
  17. Goller, B., Beck, J.L. and Schueller, G.I. (2012), "Evidence-based identification of weighting factors in Bayesian model updating using modal data", J. Eng. Mech., 138(5), 430-440. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000351
  18. Govers, Y. and Link, M. (2010), "Stochastic model updating-covariance matrix adjustment from uncertain experimental modal data", Mech. Syst. Signal Process., 24(3), 696-706. https://doi.org/10.1016/j.ymssp.2009.10.006
  19. Hastings, W. (1970), "Monte Carlo sampling methods using Markov chains and their applications", Biometrika, 57(1), 97-109. https://doi.org/10.1093/biomet/57.1.97
  20. Hirooka, T., Kim, C.W., Hayashi, G. and Goi, Y. (2021). "Vibration monitoring of a real steel plate girder bridge under artificial local damage and varying temperature", EASEC16, Brisbane, Australia.
  21. Jaishi, B. and Ren, W.X. (2005), "Structural finite element model updating using ambient vibration test results", J. Struct. Eng, 131(4), 617-628. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:4(617)
  22. Jaishi, B. and Ren, W.X. (2006), "Damage detection by finite element model updating using modal flexibility residual", J. Sound Vib., 290(1-2), 369-387. https://doi.org/10.1016/j.jsv.2005.04.006
  23. Jang, J. and Smyth, A. (2017), "Bayesian model updating of a full-scale finite element model with sensitivity-based clustering", Struct. Control Health Monitor., 24(11), e2004. https://doi.org/10.1002/stc.2004
  24. Katafygiotis, L.S. and Beck, J.L. (1998), "Updating models and their uncertainties. ii: model identifiability", J. Eng. Mech., 124(4), 463-467. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(463)
  25. Lam, H.F., Yang, J.H. and Au, S.K. (2015), "Bayesian model updating of a coupled-slab system using field test data utilizing an enhanced Markov chain Monte Carlo simulation algorithm", Eng. Struct., 102, 144-155. https://doi.org/10.1016/j.engstruct.2015.08.005
  26. Lam, H.F., Yang, J.H. and Au, S.K. (2018), "Markov chain Monte Carlo-based Bayesian method for structural model updating and damage detection", Struct. Control Health Monitor., 25(4), e2140. https://doi.org/10.1002/stc.2140
  27. Liu, P., Huang, S., Song, M. and Yang, W. (2021), "Bayesian model updating of a twin-tower masonry structure through subset simulation optimization using ambient vibration data", J. Civil Struct. Health Monitor., 11, 129-148. https://doi.org/10.1007/s13349-020-00443-y
  28. Lye, A., Cicirello, A. and Patelli, E. (2021), "Sampling methods for solving Bayesian model updating problems: A tutorial", Mech. Syst. Signal Process., 159, 107760. https://doi.org/10.1016/j.ymssp.2021.107760
  29. Mares, C., Mottershead, J.E. and Friswell, M.I. (2006), "Stochastic model updating: part 1-theory and simulated example", Mech. Syst. Signal Process., 20(7), 1674-1695. https://doi.org/10.1016/j.ymssp.2005.06.006
  30. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N. and Teller, A.H. (1953), "Equation of state calculations by fast computing machines", J. Chem. Phys., 21(6), 1087-1092. https://doi.org/10.1063/1.1699114
  31. Mosegaard, K. and Tarantola, A. (1995), "Monte Carlo sampling of solutions to inverse problems", J. Geophys. Res.: Solid Earth, 100(B7), 12431-12447. https://doi.org/10.1029/94JB03097
  32. Mottershead, J.E. and Friswell, M.I. (1993), "Model updating in structural dynamics: a survey", J. Sound Vib., 167(2), 347-375. https://doi.org/10.1006/jsvi.1993.1340
  33. Mottershead, J.E., Mares, C., James, S. and Friswell, M.I. (2006), "Stochastic model updating: part 2-application to a set of physical structures", Mech. Syst. Signal Process., 20(8), 2171-2185. https://doi.org/10.1016/j.ymssp.2005.06.007
  34. Mottershead, J.E., Link, M. and Friswell, M.I. (2011), "The sensitivity method in finite element model updating: a tutorial", Mech. Syst. Signal Process., 25(7), 2275-2296. https://doi.org/10.1016/j.ymssp.2010.10.012
  35. Muto, M. and Beck, J.L. (2008), "Bayesian updating and model class selection for hysteretic structural models using stochastic simulation", J. Vib. Control, 14(1-2), 7-34. https://doi.org/10.1177/1077546307079400
  36. Ni, Y.C. and Zhang, F.L. (2021), "Uncertainty quantification in fast Bayesian modal identification using forced vibration data considering the ambient effect", Mech. Syst. Signal Process., 148, 107078. https://doi.org/10.1016/j.ymssp.2020.107078
  37. Ni, Y.C., Zhang, Q.W. and Liu, J.F. (2022), "Dynamic performance investigation of a long-span suspension bridge using a Bayesian approach", Mech. Syst. Signal Process., 168, 108700. https://doi.org/10.1016/j.ymssp.2021.108700
  38. Pandey, A.K. and Biswas, M. (1994), "Damage detection in structures using changes in flexibility", J. Sound Vib., 169(1), 3-17. https://doi.org/10.1006/jsvi.1994.1002
  39. Parzen, E. (1962), "On estimation of a probability density function and mode", Annals Mathe. Statist., 33(3), 1065-1076. https://doi.org/10.1214/aoms/1177704472
  40. Ramancha, M.K., Astroza, R., Conte, J.P., Restrepo, J.I. and Todd, M.D. (2020), "Bayesian nonlinear finite element model updating of a full-scale bridge-column using sequential Monte Carlo", In: Model Validation and Uncertainty Quantification, Volume 3, Springer, Cham.
  41. Ramancha, M.K., Astroza, R., Madarshahian, R. and Conte, J.P. (2022), "Bayesian updating and identifiability assessment of nonlinear finite element models", Mech. Syst. Signal Process., 167, 108517. https://doi.org/10.1016/j. ymssp.2021.108517
  42. Patelli, E., Govers, Y., Broggi, M., Gomes, H.M., Link, M., and Mottershead, J.E. (2017), "Sensitivity or Bayesian model updating: a comparison of techniques using the DLR AIRMOD test data", Arch. Appl. Mech., 87(5), 905-925. https://doi.org/ 10.1007/s00419-017-1233-1
  43. Rosenblatt, M. (1956), "Remarks on some nonparametric estimates of a density function", Annals Mathe. Statist., 27(3), 832-837. https://doi.org/10.1214/aoms/1177728190
  44. Sehgal, S. and Kumar, H. (2016), "Structural dynamic model updating techniques: a state of the art review", Arch. Computat. Methods Eng., 23, 515-533. https://doi.org/10.1007/ s11831-015-9150-3
  45. Simoen, E., De Roeck, G. and Lombaert, G. (2015), "Dealing with uncertainty in model updating for damage assessment: a review", Mech. Syst. Signal Process., 56-57, 123-149. https://doi.org/10.1016/j.ymssp.2014.11.001
  46. Song, M., Yousefianmoghadam, S., Mohammadi, M.E., Moaveni, B., Stavridis, A. and Wood, R.L. (2018), "An application of finite element model updating for damage assessment of a two-story reinforced concrete building and comparison with lidar" Struct. Health Monitor., 17(5), 1129-1150. https://doi.org/10.1177/1475921717737970
  47. Tierney, L. (1994), "Markov chains for exploring posterior distributions", Annals Statist., 22(4), 1701-1728. https://doi.org/10.1214/aos/1176325750
  48. Tran-Ngoc, H., He, L., Reynders, E., Khatir, S., Le-Xuan, T., De Roeck, G., Bui-Tien, T. and Wahab, M.A. (2020), "An efficient approach to model updating for a multispan railway bridge using orthogonal diagonalization combined with improved particle swarm optimization", J. Sound Vib., 476, 115315. https://doi.org/10.1016/j.jsv.2020.115315
  49. Van Overschee, P. and De Moor, B.L. (2012), Subspace identification for linear systems: Theory-Implementation-Applications, Springer Science & Business Media.
  50. Vanik, M.W., Beck, J.L. and Au, S.K. (2000), "Bayesian probabilistic approach to structural health monitoring", J. Eng. Mech., 126(7), 738-745. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:7(738)
  51. Worden, K., Farrar, C.R., Manson, G. and Park, G. (2007), "The fundamental axioms of structural health monitoring", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2082), 1639-1664. https://doi.org/10.1098/rspa.2007.1834
  52. Xin, Y., Hao, H., Li, J., Wang, Z.C., Wan, H.P. and Ren, W.X. (2019), "Bayesian based nonlinear model updating using instantaneous characteristics of structural dynamic responses", Eng. Struct., 183, 459-474. https://doi.org/10.1016/j.engstruct.2019.01.043
  53. Yin, S., Ding, S.X., Haghani, A., Hao, H. and Zhang, P. (2012), "A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process", J. Process Control, 22(9), 1567-1581. https://doi.org/10.1016/j.jprocont.2012.06.009
  54. Yuen, K.V. (2010), Bayesian methods for structural dynamics and civil engineering, John Wiley & Sons.
  55. Zhang, F.L., Au, S.K. and Ni, Y.C. (2021), "Two-stage Bayesian system identification using Gaussian discrepancy model", Struct. Health Monitor., 20(2), 580-595. https://doi.org/10.1177/1475921720933523
  56. Zhou, X., Kim, C.W., Zhang, F.L. and Chang, K.C. (2022), "Vibration-based Bayesian model updating of an actual steel truss bridge subjected to incremental damage", Eng. Struct., 260, 114226. https://doi.org/10.1016/j.engstruct.2022.114226