DOI QR코드

DOI QR Code

Ultrasonic guided waves-based fatigue crack detection in a steel I-beam: an experimental study

  • Jiaqi Tu (College of Civil Engineering and Architecture, Key Laboratory of Space Structures of Zhejiang Province, Zhejiang University) ;
  • Xian Xu (College of Civil Engineering and Architecture, Key Laboratory of Space Structures of Zhejiang Province, Zhejiang University) ;
  • Chung Bang Yun (College of Civil Engineering and Architecture, Key Laboratory of Space Structures of Zhejiang Province, Zhejiang University) ;
  • Yuanfeng Duan (College of Civil Engineering and Architecture, Institute of Transportation Engineering, Zhejiang University)
  • Received : 2022.06.28
  • Accepted : 2022.09.21
  • Published : 2023.01.25

Abstract

Fatigue crack is a fatal problem for steel structures. Early detection and maintenance can help extend the service life and prevent hazards. This paper presents the ultrasonic guided waves-based (UGWs-based) fatigue crack detection of a steel I-beam. The semi-analytical finite element model has been built to obtain the wave propagation characteristics. Damage indices in both time and frequency domains were analyzed by considering the characteristic variations of UGWs including the amplitude, phase angle, and wave packet energy. The pulse-echo and pitch-catch methods were combined in the detection scheme. Lab-scale experiments were conducted on welded steel I-beams to verify the proposed method. Results show that the damage indices based on the characteristic variations in the time domain can identify and localize the fatigue crack before it enters the rapid growth stage. The damage severity can be reasonably evaluated by analyzing the time-domain damage indices. Two nonlinear damage indices in the frequency domain give earlier warnings of the fatigue crack than the time-domain damage indices do. The identification results based on the above two nonlinear indices are found to be less consistent under various excitation frequencies. More robust nonlinear techniques needed to be searched and tested for early crack detection in steel I-beams in further study.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Key R&D Program of China (2021YFF0501002) and a research grant from the Center for Balance Architecture of Zhejiang University.

References

  1. Alnuaimi, H., Amjad, U., Russo, P., Lopresto, V. and Kundu, T. (2020), "Monitoring damage in composite plates from crack initiation to macrocrack propagation combining linear and nonlinear ultrasonic techniques", Struct. Health Monit., 20(1), 139-150. https://doi.org/10.1177/1475921720922922
  2. Basu, S., Thirumalaiselvi, A., Sasmal, S. and Kundu, T. (2021), "Nonlinear ultrasonics-based technique for monitoring damage progression in reinforced concrete structures", Ultrasonics, 115, 106472. https://doi.org/10.1016/j.ultras.2021.106472
  3. Bathias, C. and Pineau, A. (2013), Fatigue of Materials and Structures: Fundamentals, ISTE Ltd, London, UK.
  4. Chua, C.A. and Cawley, P. (2020), "Crack growth monitoring using fundamental shear horizontal guided waves", Struct. Health Monit., 19(5), 1311-1322. https://doi.org/10.1177/1475921719882330
  5. Dutta, D., Sohn, H., Harries, K.A. and Rizzo, P. (2008), "A Nonlinear Acoustic Technique for Crack Detection in Metallic Structures", Proceedings of the Conference on Health Monitoring of Structural and Biological Systems, San Diego, CA, USA, March.
  6. Farrar, C.R. and Worden, K. (2009), "An introduction to structural health monitoring", Proceedings of the Symposium on New Trends in Vibration Based Structural Health Monitoring, Udine, Italy, September.
  7. Fierro, G.P.M. and Meo, M. (2015), "Residual fatigue life estimation using a nonlinear ultrasound modulation method", Smart Mater. Struct., 24(2), 025040. https://doi.org/10.1088/0964-1726/24/2/025040
  8. Garg, M., Sharma, S., Sharma, S. and Mehta, R. (2016), "Noncontact damage monitoring technique for FRP laminates using guided waves", Smart Struct. Syst., Int. J., 17(5), 795-817. https://doi.org/10.12989/sss.2016.17.5.795
  9. Guan, S.Y., Rice, J.A., Li, C.Z., Li, Y.R. and Wang, G.C. (2015), "Dynamic and static structural displacement measurement using backscattering DC coupled radar", Smart Struct. Syst., Int. J., 16(3), 521-535. https://doi.org/10.12989/sss.2015.16.3.521
  10. Hayashi, T., Song, W.J. and Rose, J.L. (2003), "Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example", Ultrasonics, 41(3), 175-183. https://doi.org/10.1016/S0041-624X(03)00097-0
  11. Hayashi, T., Tamayama, C. and Murase, M. (2006), "Wave structure analysis of guided waves in a bar with an arbitrary cross-section", Ultrasonics, 44(1), 17-24. https://doi.org/10.1016/j.ultras.2005.06.006
  12. Hangzhou Zheda Jingyi Electromechanical Technology Inc. (2015), http://www.jingyitech.com
  13. Hola, J. and Schabowicz, K. (2010), "State-of-the-art non-destructive methods for diagnostic testing of building structures-anticipated development trends", Arch. Civil Mech. Eng., 10(3), 5-18. https://doi.org/10.1016/S1644-9665(12)60133-2
  14. Jeon, I.G., Lim, H.J., Liu, P.P., Park, B.J., Heinze, A. and Sohn, H. (2019), "Fatigue crack detection in rotating steel shafts using noncontact ultrasonic modulation measurements", Eng. Struct., 196, 109293. https://doi.org/10.1016/j.engstruct.2019.109293
  15. Kundu, T. ed. (2019), Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation, Springer, Cham, Switzerland.
  16. Lee, Y.F., Lu, Y. and Guan, R.Q. (2020), "Nonlinear guided waves for fatigue crack evaluation in steel joints with digital image correlation validation", Smart Mater. Struct., 29(3), 035031. https://doi.org/10.1088/1361-665X/ab6fe7
  17. Lim, H.J. and Sohn, H. (2017), "Necessary conditions for nonlinear ultrasonic modulation generation given a localized fatigue crack in a plate-like structure", Materials, 10(3), 248. https://doi.org/10.3390/ma10030248
  18. Lim, H.J. and Sohn, H. (2020), "Online stress monitoring technique based on Lamb-wave measurements and a convolutional neural network under static and dynamic loadings", Exp. Mech., 60(2), 171-179. https://doi.org/10.1007/s11340-019-00546-8
  19. Lim, H.J., Kim, Y., Sohn, H., Jeon, I. and Liu, P. (2017), "Reliability improvement of nonlinear ultrasonic modulation based fatigue crack detection using feature-level data fusion", Smart Struct. Syst., Int. J., 20(6), 683-696. https://doi.org/10.12989/sss.2017.20.6.683
  20. Lu, Y.H. and Michaels, J.E. (2005), "A methodology for structural health monitoring with diffuse ultrasonic waves in the presence of temperature variations", Ultrasonics, 43(9), 717-731. https://doi.org/10.1016/j.ultras.2005.05.001
  21. Mariani, S. and Cawley, P. (2021), "Change detection using the generalized likelihood ratio method to improve the sensitivity of guided wave structural health monitoring systems", Struct. Health Monit., 20(6), 3201-3226. https://doi.org/10.1177/1475921720981831
  22. Mitra, M. and Gopalakrishnan, S. (2016), "Guided wave based structural health monitoring: A review", Smart Mater. Struct., 25(5), 053001. https://doi.org/10.1088/0964-1726/25/5/053001
  23. Molina, C.A. and Chapetti, M.D. (2018), "Estimation of high cycle fatigue behavior using a threshold curve concept", Int. J. Fatigue, 108, 47-52. https://doi.org/10.1016/j.ijfatigue.2017.11.007
  24. Niu, X.D., Marques, H.R. and Chen, H.P. (2018), "Sensitivity analysis of circumferential transducer array with T(0,1) mode of pipes", Smart Struct. Syst., Int. J., 21(6), 761-776. https://doi.org/10.12989/sss.2018.21.6.761
  25. Olisa, S.C., Khan, M.A. and Starr, A. (2021), "Review of current guided wave ultrasonic testing (GWUT) limitations and future directions", Sensors, 21(3), 811-838. https://doi.org/10.3390/s21030811
  26. Raabe, D., Tasan, C.C. and Olivetti, E.A. (2019), "Strategies for improving the sustainability of structural metals", Nature, 575(7781), 64-74. https://doi.org/10.1038/s41586-019-1702-5
  27. Rehman, S.K.U., Ibrahim, Z., Memon, S.A. and Jameel, M. (2016), "Nondestructive test methods for concrete bridges: a review", Constr. Build. Mater., 107, 58-86. https://doi.org/10.1016/j.conbuildmat.2015.12.011
  28. Rostami, J., Chen, J.M. and Tse, P.W. (2017), "A signal processing approach with a smooth empirical mode decomposition to reveal hidden trace of corrosion in highly contaminated guided wave signals for concrete-covered pipes", Sensors, 17(2), 302. https://doi.org/10.3390/s17020302
  29. Rykaluk, K., Marcinczak, K. and Rowinski, S. (2018), "Fatigue hazards in welded plate crane runway girders - Locations, causes and calculations", Arch. Civil Mech. Eng., 18(1), 69-82. https://doi.org/10.1016/j.acme.2017.05.003
  30. Santecchia, E., Hamouda, A.M.S, Musharavati, F., Zalnezhad, E., Cabibbo, M., El Mehtedi, M. and Spigarelli, S. (2016), "A review on fatigue life prediction methods for metals", Adv. Mater. Sci. Eng., 2016, 9573524. https://doi.org/10.1155/2016/9573524
  31. Schaal, C., Bischoff, S. and Gaul, L. (2016), "Damage detection in multi-wire cables using guided ultrasonic waves", Struct. Health Monit., 15(3), 279-288. https://doi.org/10.1177/1475921716642747
  32. Solodov, I.Y., Krohn, N. and Busse, G. (2002), "CAN: an example of nonclassical acoustic nonlinearity in solids", Ultrasonics, 40(1-8), 621-625. https://doi.org/10.1016/S0041-624X(02)00186-5
  33. Tu, J.Q., Tang, Z.F., Yun, C.B., Wu, J.J. and Xu, X. (2021), "Guided wave-based damage assessment on welded steel Ibeam under ambient temperature variations", Struct. Control Health Monit., 28(4), e2696. https://doi.org/10.1002/stc.2696
  34. Wang, Z.J., Qiao, P.Z. and Shi, B.K. (2018), "Effective time-frequency characterization of Lamb wave dispersion in plate-like structures with non-reflecting boundaries", Smart Struct. Syst., Int. J., 21(2), 195-205. https://doi.org/10.12989/sss.2018.21.2.195
  35. Wang, K., Cao, W.X., Su, Z.Q., Wang, P.X., Zhang, X.J., Chen, L.J., Guan, R.Q. and Lu, Y. (2020), "Structural health monitoring of high-speed railway tracks using diffuse ultrasonic wave-based condition contrast: theory and validation", Smart Struct. Syst., Int. J., 26(2), 227-239. https://doi.org/10.12989/sss.2020.26.2.227
  36. Wu, J.J., Tang, Z.F., Lv, F.Z., Yang, K.J., Yun, C.B. and Duan, Y.F. (2018), "Ultrasonic guided wave-based switch rail monitoring using independent component analysis", Meas. Sci. Technol., 29(11), 115102. https://doi.org/10.1088/1361-6501/aadc47
  37. Yang, Y., Ng, C., Kotousov, A., Sohn, H. and Lim, H.J. (2018), "Second harmonic generation at fatigue cracks by low-frequency Lamb waves: Experimental and numerical studies", Mech. Syst. Signal Proc., 99, 760-773. http://dx.doi.org/10.1016/j.ymssp.2017.07.011
  38. Yang, S., Jung, J., Liu, P., Lim, H.J., Yi, Y., Sohn, H. and Bae, I.H. (2019), "Ultrasonic wireless sensor development for online fatigue crack detection and failure warning", Struct. Eng. Mech., 69(4), 407-416. https://doi.org/10.12989/sem.2019.69.4.407
  39. Yu, X.D., Peng, Z., Jing, X. and Zheng, F. (2019), "Detection of damage in welded joints using high order feature guided ultrasonic waves", Mech. Syst. Signal Proc., 126, 176-192. https://doi.org/10.1016/j.ymssp.2019.02.026
  40. Zhang, P.F., Tang, Z.F., Duan, Y.F., Yun, C.B. and Lv, F.Z. (2018), "Ultrasonic guided wave approach incorporating SAFE for detecting wire breakage in bridge cable", Smart Struct. Syst., Int. J., 22(4), 481-493. http://dx.doi.org/10.12989/sss.2018.22.4.481
  41. Zhang, Y., Li, D.S. and Zheng, X.T. (2019), "Detection and location of bolt group looseness using ultrasonic guided wave", Smart Struct. Syst., Int. J., 24(3), 293-301. https://doi.org/10.12989/sss.2019.24.3.293