Acknowledgement
The research described in this paper was financially supported by the National Key R&D Program of China (2021YFF0501002) and a research grant from the Center for Balance Architecture of Zhejiang University.
References
- Alnuaimi, H., Amjad, U., Russo, P., Lopresto, V. and Kundu, T. (2020), "Monitoring damage in composite plates from crack initiation to macrocrack propagation combining linear and nonlinear ultrasonic techniques", Struct. Health Monit., 20(1), 139-150. https://doi.org/10.1177/1475921720922922
- Basu, S., Thirumalaiselvi, A., Sasmal, S. and Kundu, T. (2021), "Nonlinear ultrasonics-based technique for monitoring damage progression in reinforced concrete structures", Ultrasonics, 115, 106472. https://doi.org/10.1016/j.ultras.2021.106472
- Bathias, C. and Pineau, A. (2013), Fatigue of Materials and Structures: Fundamentals, ISTE Ltd, London, UK.
- Chua, C.A. and Cawley, P. (2020), "Crack growth monitoring using fundamental shear horizontal guided waves", Struct. Health Monit., 19(5), 1311-1322. https://doi.org/10.1177/1475921719882330
- Dutta, D., Sohn, H., Harries, K.A. and Rizzo, P. (2008), "A Nonlinear Acoustic Technique for Crack Detection in Metallic Structures", Proceedings of the Conference on Health Monitoring of Structural and Biological Systems, San Diego, CA, USA, March.
- Farrar, C.R. and Worden, K. (2009), "An introduction to structural health monitoring", Proceedings of the Symposium on New Trends in Vibration Based Structural Health Monitoring, Udine, Italy, September.
- Fierro, G.P.M. and Meo, M. (2015), "Residual fatigue life estimation using a nonlinear ultrasound modulation method", Smart Mater. Struct., 24(2), 025040. https://doi.org/10.1088/0964-1726/24/2/025040
- Garg, M., Sharma, S., Sharma, S. and Mehta, R. (2016), "Noncontact damage monitoring technique for FRP laminates using guided waves", Smart Struct. Syst., Int. J., 17(5), 795-817. https://doi.org/10.12989/sss.2016.17.5.795
- Guan, S.Y., Rice, J.A., Li, C.Z., Li, Y.R. and Wang, G.C. (2015), "Dynamic and static structural displacement measurement using backscattering DC coupled radar", Smart Struct. Syst., Int. J., 16(3), 521-535. https://doi.org/10.12989/sss.2015.16.3.521
- Hayashi, T., Song, W.J. and Rose, J.L. (2003), "Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example", Ultrasonics, 41(3), 175-183. https://doi.org/10.1016/S0041-624X(03)00097-0
- Hayashi, T., Tamayama, C. and Murase, M. (2006), "Wave structure analysis of guided waves in a bar with an arbitrary cross-section", Ultrasonics, 44(1), 17-24. https://doi.org/10.1016/j.ultras.2005.06.006
- Hangzhou Zheda Jingyi Electromechanical Technology Inc. (2015), http://www.jingyitech.com
- Hola, J. and Schabowicz, K. (2010), "State-of-the-art non-destructive methods for diagnostic testing of building structures-anticipated development trends", Arch. Civil Mech. Eng., 10(3), 5-18. https://doi.org/10.1016/S1644-9665(12)60133-2
- Jeon, I.G., Lim, H.J., Liu, P.P., Park, B.J., Heinze, A. and Sohn, H. (2019), "Fatigue crack detection in rotating steel shafts using noncontact ultrasonic modulation measurements", Eng. Struct., 196, 109293. https://doi.org/10.1016/j.engstruct.2019.109293
- Kundu, T. ed. (2019), Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation, Springer, Cham, Switzerland.
- Lee, Y.F., Lu, Y. and Guan, R.Q. (2020), "Nonlinear guided waves for fatigue crack evaluation in steel joints with digital image correlation validation", Smart Mater. Struct., 29(3), 035031. https://doi.org/10.1088/1361-665X/ab6fe7
- Lim, H.J. and Sohn, H. (2017), "Necessary conditions for nonlinear ultrasonic modulation generation given a localized fatigue crack in a plate-like structure", Materials, 10(3), 248. https://doi.org/10.3390/ma10030248
- Lim, H.J. and Sohn, H. (2020), "Online stress monitoring technique based on Lamb-wave measurements and a convolutional neural network under static and dynamic loadings", Exp. Mech., 60(2), 171-179. https://doi.org/10.1007/s11340-019-00546-8
- Lim, H.J., Kim, Y., Sohn, H., Jeon, I. and Liu, P. (2017), "Reliability improvement of nonlinear ultrasonic modulation based fatigue crack detection using feature-level data fusion", Smart Struct. Syst., Int. J., 20(6), 683-696. https://doi.org/10.12989/sss.2017.20.6.683
- Lu, Y.H. and Michaels, J.E. (2005), "A methodology for structural health monitoring with diffuse ultrasonic waves in the presence of temperature variations", Ultrasonics, 43(9), 717-731. https://doi.org/10.1016/j.ultras.2005.05.001
- Mariani, S. and Cawley, P. (2021), "Change detection using the generalized likelihood ratio method to improve the sensitivity of guided wave structural health monitoring systems", Struct. Health Monit., 20(6), 3201-3226. https://doi.org/10.1177/1475921720981831
- Mitra, M. and Gopalakrishnan, S. (2016), "Guided wave based structural health monitoring: A review", Smart Mater. Struct., 25(5), 053001. https://doi.org/10.1088/0964-1726/25/5/053001
- Molina, C.A. and Chapetti, M.D. (2018), "Estimation of high cycle fatigue behavior using a threshold curve concept", Int. J. Fatigue, 108, 47-52. https://doi.org/10.1016/j.ijfatigue.2017.11.007
- Niu, X.D., Marques, H.R. and Chen, H.P. (2018), "Sensitivity analysis of circumferential transducer array with T(0,1) mode of pipes", Smart Struct. Syst., Int. J., 21(6), 761-776. https://doi.org/10.12989/sss.2018.21.6.761
- Olisa, S.C., Khan, M.A. and Starr, A. (2021), "Review of current guided wave ultrasonic testing (GWUT) limitations and future directions", Sensors, 21(3), 811-838. https://doi.org/10.3390/s21030811
- Raabe, D., Tasan, C.C. and Olivetti, E.A. (2019), "Strategies for improving the sustainability of structural metals", Nature, 575(7781), 64-74. https://doi.org/10.1038/s41586-019-1702-5
- Rehman, S.K.U., Ibrahim, Z., Memon, S.A. and Jameel, M. (2016), "Nondestructive test methods for concrete bridges: a review", Constr. Build. Mater., 107, 58-86. https://doi.org/10.1016/j.conbuildmat.2015.12.011
- Rostami, J., Chen, J.M. and Tse, P.W. (2017), "A signal processing approach with a smooth empirical mode decomposition to reveal hidden trace of corrosion in highly contaminated guided wave signals for concrete-covered pipes", Sensors, 17(2), 302. https://doi.org/10.3390/s17020302
- Rykaluk, K., Marcinczak, K. and Rowinski, S. (2018), "Fatigue hazards in welded plate crane runway girders - Locations, causes and calculations", Arch. Civil Mech. Eng., 18(1), 69-82. https://doi.org/10.1016/j.acme.2017.05.003
- Santecchia, E., Hamouda, A.M.S, Musharavati, F., Zalnezhad, E., Cabibbo, M., El Mehtedi, M. and Spigarelli, S. (2016), "A review on fatigue life prediction methods for metals", Adv. Mater. Sci. Eng., 2016, 9573524. https://doi.org/10.1155/2016/9573524
- Schaal, C., Bischoff, S. and Gaul, L. (2016), "Damage detection in multi-wire cables using guided ultrasonic waves", Struct. Health Monit., 15(3), 279-288. https://doi.org/10.1177/1475921716642747
- Solodov, I.Y., Krohn, N. and Busse, G. (2002), "CAN: an example of nonclassical acoustic nonlinearity in solids", Ultrasonics, 40(1-8), 621-625. https://doi.org/10.1016/S0041-624X(02)00186-5
- Tu, J.Q., Tang, Z.F., Yun, C.B., Wu, J.J. and Xu, X. (2021), "Guided wave-based damage assessment on welded steel Ibeam under ambient temperature variations", Struct. Control Health Monit., 28(4), e2696. https://doi.org/10.1002/stc.2696
- Wang, Z.J., Qiao, P.Z. and Shi, B.K. (2018), "Effective time-frequency characterization of Lamb wave dispersion in plate-like structures with non-reflecting boundaries", Smart Struct. Syst., Int. J., 21(2), 195-205. https://doi.org/10.12989/sss.2018.21.2.195
- Wang, K., Cao, W.X., Su, Z.Q., Wang, P.X., Zhang, X.J., Chen, L.J., Guan, R.Q. and Lu, Y. (2020), "Structural health monitoring of high-speed railway tracks using diffuse ultrasonic wave-based condition contrast: theory and validation", Smart Struct. Syst., Int. J., 26(2), 227-239. https://doi.org/10.12989/sss.2020.26.2.227
- Wu, J.J., Tang, Z.F., Lv, F.Z., Yang, K.J., Yun, C.B. and Duan, Y.F. (2018), "Ultrasonic guided wave-based switch rail monitoring using independent component analysis", Meas. Sci. Technol., 29(11), 115102. https://doi.org/10.1088/1361-6501/aadc47
- Yang, Y., Ng, C., Kotousov, A., Sohn, H. and Lim, H.J. (2018), "Second harmonic generation at fatigue cracks by low-frequency Lamb waves: Experimental and numerical studies", Mech. Syst. Signal Proc., 99, 760-773. http://dx.doi.org/10.1016/j.ymssp.2017.07.011
- Yang, S., Jung, J., Liu, P., Lim, H.J., Yi, Y., Sohn, H. and Bae, I.H. (2019), "Ultrasonic wireless sensor development for online fatigue crack detection and failure warning", Struct. Eng. Mech., 69(4), 407-416. https://doi.org/10.12989/sem.2019.69.4.407
- Yu, X.D., Peng, Z., Jing, X. and Zheng, F. (2019), "Detection of damage in welded joints using high order feature guided ultrasonic waves", Mech. Syst. Signal Proc., 126, 176-192. https://doi.org/10.1016/j.ymssp.2019.02.026
- Zhang, P.F., Tang, Z.F., Duan, Y.F., Yun, C.B. and Lv, F.Z. (2018), "Ultrasonic guided wave approach incorporating SAFE for detecting wire breakage in bridge cable", Smart Struct. Syst., Int. J., 22(4), 481-493. http://dx.doi.org/10.12989/sss.2018.22.4.481
- Zhang, Y., Li, D.S. and Zheng, X.T. (2019), "Detection and location of bolt group looseness using ultrasonic guided wave", Smart Struct. Syst., Int. J., 24(3), 293-301. https://doi.org/10.12989/sss.2019.24.3.293