References
- Abd Elaty, M.A.A. (2014), "Compressive strength prediction of Portland cement concrete with age using a new model", HBRC Journal, 10(2), 145-155. https://doi.org/10.1016/j.hbrcj.2013.09.005
- Al-Swaidani, A., Soud, A. and Hammami, A. (2017), "Improvement of the early-age compressive strength, water permeability, and sulfuric acid resistance of scoria-based mortars/concrete using limestone filler", Adv. Mater. Sci. Eng. https://doi.org/10.1155/2017/8373518
- Ashokkumar Palanisamy, D.D.J. and Sampath, S. (2020), "An Overview of Structural Health Monitoring By Using Smart Sensing Technology-"A Review"", PalArch's J. Archaeol. Egypt/Egyptol., 17(6), 13412-13417.
- ASTM, C. (1998), 1074. "Standard Practice for Estimating Concrete Strength by the Maturity Method", ASTM International, West Conshohocken, PA, USA.
- ASTM, C. (2002), 918-02. "Standar Metode Tes Untuk Menentukan Kuat Tekan Beton Umur Muda Dan Memperkirakan Kekuatan Di Umur Selanjutnya".
- Blumauer, U., Hozjan, T. and Trtnik, G. (2020), "Prediction of mechanical properties of limestone concrete after high temperature exposure with artificial neural networks", Adv. Concrete Constr., Int. J., 10(3), 247-256. https://doi.org/10.12989/acc.2020.10.3.247
- Brooks, A.G., Schindler, A.K. and Barnes, R.W. (2007), "Maturity method evaluated for various cementitious materials", J. Mater. Civil Eng., 19(12), 1017-1025. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:12(1017)
- Cui, X., Wang, Y., Zeng, S., Zhou, D., Han, B., Yu, X. and Ou, J. (2017), "Numerical analysis on design and application of cement-based sensor for structural health monitoring", J. Intell. Mater. Syst. Struct., 28(18), 2579-2602. https://doi.org/10.1177/1045389X17692051
- Erdal, H., Erdal, M., Simsek, O. and Erdal, H.I. (2018), "Prediction of concrete compressive strength using non-destructive test results", Comput. Concrete, Int. J., 21(4), 407-417. https://doi.org/10.12989/cac.2018.21.4.407
- Ghiasi, R. and Ghasemi, M.R. (2018), "An intelligent health monitoring method for processing data collected from the sensor network of structure", Steel Compos. Struct., Int. J., 29(6), 703-716. https://doi.org/10.12989/scs.2018.29.6.703
- Hannan, M.A., Hassan, K. and Jern, K.P. (2018), "A review on sensors and systems in structural health monitoring: Current issues and challenges", Smart Struct. Syst., Int. J., 22(5), 509-525. https://doi.org/10.12989/sss.2018.22.5.509
- Jin, N.J., Yeon, K.-S., Min, S.-H. and Yeon, J. (2017), "Using the Maturity Method in Predicting the Compressive Strength of Vinyl Ester Polymer Concrete at an Early Age", Adv. Mater. Sci. Eng., 2017. https://doi.org/10.1155/2017/4546732
- John, S.T., Roy, B.K., Sarkar, P. and Davis, R. (2020), "IoT enabled real-time monitoring system for early-age compressive strength of concrete", J. Constr. Eng. Manage., 146(2), 5019020. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001754
- Kim, T. and Rens, K.L. (2008), "Concrete maturity method using variable temperature curing for normal and high-strength concrete. I: Experimental study", J. Mater. Civil Eng., 20(12), 727-734. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:12(727)
- Kim, J.-K., Moon, Y.-H. and Eo, S.-H. (1998), "Compressive strength development of concrete with different curing time and temperature", Cement Concrete Res., 28(12), 1761-1773. https://doi.org/10.1016/S0008-8846(98)00164-1
- Leng, J.S., Barnes, R.A., Hameed, A., Winter, D., Tetlow, J., Mays, G.C. and Fernando, G.F. (2006), "Structural NDE of concrete structures using protected EFPI and FBG sensors", Sensors and Actuators A: Physical, 126(2), 340-347. https://doi.org/10.1016/j.sna.2005.10.050
- Nataraja, M.C. and Das, L. (2010), "Concrete mix proportioning as per IS 10262: 2009-Comparison with IS 10262: 1982 and ACI 211.1-91", Indian Concrete J., 64-70.
- Olawale, D.O., Sullivan, G., Dickens, T., Tsalickis, S., Okoli, O.I., Sobanjo, J.O. and Wang, B. (2012), "Development of a triboluminescence-based sensor system for concrete structures", Struct. Health Monitor., 11(2), 139-147. https://doi.org/10.1177/1475921711414231
- Plowman, J.M. (1956), "Discussion: Maturity and the strength of concrete", Magaz. Concrete Res., 8(24), 169-183. https://doi.org/10.1680/macr.1956.8.24.169
- Sadowski, L., Nikoo, M. and Nikoo, M. (2018), "Concrete compressive strength prediction using the imperialist competitive algorithm", Comput. Concrete, Int. J., 22(4), 355-363. https://doi.org/10.12989/cac.2018.22.4.355
- Standard, I. (2000), Plain and Reinforced Concrete-code of Practice, Bureau of Indian Standards, New Delhi, India.
- Utepov, Y., Khudaibergenov, O., Kabdush, Y. and Kazkeev, A. (2019), "Prototyping an embedded wireless sensor for monitoring reinforced concrete structures", Comput. Concrete, Int. J., 24(2), 95-102. https://doi.org/10.12989/cac.2019.24.2.095
- Ye, X.W., Jin, T. and Yun, C.B. (2019), "A review on deep learning-based structural health monitoring of civil infrastructures", Smart Struct. Syst., Int. J., 24(5), 567-585. https://doi.org/10.12989/sss.2019.24.5.567
- Yikici, T.A. and Chen, H.-L.R. (2015), "Use of maturity method to estimate compressive strength of mass concrete", Constr. Build. Mater., 95, 802-812. https://doi.org/10.1016/j.conbuildmat.2015.07.026
- Yoon, H., Kim, Y.J., Kim, H.S., Kang, J.W. and Koh, H.-M. (2017), "Evaluation of early-age concrete compressive strength with ultrasonic sensors", Sensors, 17(8), 1817. https://doi.org/10.3390/s17081817