References
- Ahmadi, H. (2019), "Nonlinear primary resonance of imperfect spiral stiffened functionally graded cylindrical shells surrounded by damping and nonlinear elastic foundation", Eng. Comput., 35(4), 1491-1505. https://doi.org/10.1007/s00366-018-0679-2.
- Amabili, M. and Balasubramanian, P. (2020), "Nonlinear vibrations of truncated conical shells considering multiple internal resonances", Nonlin. Dyn., 100(1), 77-93. https://doi.org/10.1007/s11071-020-05507-8.
- Anh, V.T.T. and Duc, N.D. (2019), "Vibration and nonlinear dynamic response of eccentrically stiffened functionally graded composite truncated conical shells surrounded by an elastic medium in thermal environments", Acta Mechanica, 230(1), 157-178. https://doi.org/10.1007/s00707-018-2282-4.
- Aris, H. and Ahmadi, H. (2020), "Nonlinear vibration analysis of FGM truncated conical shells subjected to harmonic excitation in thermal environment", Mech. Res. Commun., 104, 103499. https://doi.org/10.1016/j.mechrescom.2020.103499.
- Aris, H. and Ahmadi, H. (2021), "Combination resonance analysis of imperfect functionally graded conical shell resting on nonlinear viscoelastic foundation in thermal environment under multi-excitation", J. Vib. Control, 28(15-16), 2121-2144. https://doi.org/10.1177/10775463211006527.
- Aris, H. and Ahmadi, H. (2021), "Nonlinear forced vibration and resonance analysis of rotating stiffened FGM truncated conical shells in a thermal environment", Mech. Bas. Des. Struct. Mach., 1-25. https://doi.org/10.1080/15397734.2021.1950011.
- Bakhtiari, M., Lakis, A.A. and Kerboua, Y. (2020), "Nonlinear vibration of truncated conical shells: Donnell, Sanders and Nemeth theories", Int. J. Nonlin. Sci. Numer. Simul., 21(1), 83-97. https://doi.org/10.1515/ijnsns-2018-0377.
- Chai, Q. and Wang, Y.Q. (2021), "A general approach for free vibration analysis of spinning joined conical-cylindrical shells with arbitrary boundary conditions", Thin Wall. Struct., 168, 108243. https://doi.org/10.1016/j.tws.2021.108243.
- Chai, Q. and Wang, Y.Q. (2022), "Traveling wave vibration of graphene platelet reinforced porous joined conical-cylindrical shells in a spinning motion", Eng. Struct., 252, 113718. https://doi.org/10.1016/j.engstruct.2021.113718.
- Chen, C. and Dai, L. (2009), "Nonlinear vibration and stability of a rotary truncated conical shell with intercoupling of high and low order modals", Commun. Nonlin. Sci. Numer. Simul., 14(1), 254-269. https://doi.org/10.1016/j.cnsns.2007.06.007.
- Civalek, O. (2007), "Linear vibration analysis of isotropic conical shells by discrete singular convolution (DSC)", Struct. Eng. Mech., 25(1), 127-130. https://doi.org/10.12989/sem.2007.25.1.127.
- Das, A. and Karmakar, A. (2018), "Free vibration characteristics of functionally graded pre-twisted conical shells under rotation", J. Inst. Eng. (India): Ser. C, 99(6), 681-692. https://doi.org/10.1007/s40032-017-0378-6.
- Das, A., Sarkar, S. and Karmakar, A. (2014), "Free vibration of pre-twisted functionally graded conical shells with rotational effect", Proceedings of ICTACEM 2014 International Conference on Theoretical, Applied, Computational and Experimental Mechanics, IIT Kharagpur, India, December.
- Dey, S., Bandopadhyay, T., Karmakar, A. and Kishimoto, K. (2011), "Free vibration of delaminated composite shallow conical shells", J. Solid Mech. Mater. Eng., 5(11), 610-626. https://doi.org/10.1299/jmmp.5.610.
- Dey, S., Sarkar, S., Das, A., Karmakar, A. and Adhikari, S. (2015), "Effect of twist and rotation on vibration of functionally graded conical shells", Int. J. Mech. Mater. Des., 11(4), 425-437. https://doi.org/10.1007/s10999-014-9266-x.
- Duc, N.D., Seung-Eock, K. and Chan, D.Q. (2018), "Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT", J. Therm. Stress., 41(3), 331-365. https://doi.org/10.1080/01495739.2017.1398623.
- Dung, D.V., Anh, L.T.N. and Hoa, L.K. (2018), "Analytical investigation on the free vibration behavior of rotating FGM truncated conical shells reinforced by orthogonal eccentric stiffeners", Mech. Adv. Mater. Struct., 25(1), 32-46. https://doi.org/10.1080/15376494.2016.1255807.
- Eyvazian, A., Musharavati, F., Tarlochan, F., Pasharavesh, A., Rajak, D.K., Husain, M.B. and Tran, T.N. (2020), "Free vibration of FG-GPLRC conical panel on elastic foundation", Struct. Eng. Mech., 75(1), 1-18. https://doi.org/10.12989/sem.2020.75.1.001.
- Fard, K.M. and Livani, M. (2015), "New enhanced higher order free vibration analysis of thick truncated conical sandwich shells with flexible cores", Struct. Eng. Mech., 55(4), 719-742. https://doi.org/10.12989/sem.2015.55.4.719.
- Fu, Y. and Chen, C. (2001), "Non-linear vibration of elastic truncated conical moderately thick shells in large overall motion", Int. J. Nonlin. Mech., 36(5), 763-771. https://doi.org/10.1016/S0020-7462(00)00042-1.
- Gao, K., Gao, W., Wu, B., Wu, D. and Song, C. (2018), "Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales", Thin Wall. Struct., 125, 281-293. https://doi.org/10.1016/j.tws.2017.12.039.
- Ghannad, M., Nejad, M.Z., Rahimi, G. and Sabouri, H. (2012), "Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials", Struct. Eng. Mech., 43(1), 105-126. https://doi.org/10.12989/sem.2012.43.1.105.
- Hua, L. (2000), "Frequency characteristics of a rotating truncated circular layered conical shell", Compos. Struct., 50(1), 59-68. https://doi.org/10.1016/S0263-8223(00)00080-5.
- Irie, T., Yamada, G. and Tanaka, K. (1984), "Natural frequencies of truncated conical shells", J. Sound Vib., 92(3), 447-453. https://doi.org/10.1016/0022-460x(84)90391-2.
- Kamaloo, A., Jabbari, M., Tooski, M.Y. and Javadi, M. (2019), "Nonlinear free vibrations analysis of delaminated composite conical shells", Int. J. Struct. Stab. Dyn., 20(01), 2050010. https://doi.org/10.1142/S0219455420500108.
- Kerboua, Y., Lakis, A. and Hmila, M. (2010), "Vibration analysis of truncated conical shells subjected to flowing fluid", Appl. Math. Model., 34(3), 791-809. https://doi.org/10.1016/j.apm.2009.06.028.
- Lam, K. and Hua, L. (1999), "On free vibration of a rotating truncated circular orthotropic conical shell", Compos. Part B: Eng., 30(2), 135-144. https://doi.org/10.1016/S1359-8368(98)00049-3.
- Li, F.M., Kishimoto, K. and Huang, W.H. (2009), "The calculations of natural frequencies and forced vibration responses of conical shell using the Rayleigh-Ritz method", Mech. Res. Commun., 36(5), 595-602. https://doi.org/10.1016/j.mechrescom.2009.02.003.
- Li, H., Lam, K.Y. and Ng, T.Y. (2005), Rotating Shell Dynamics, Elsevier.
- Liew, K.M., Ng, T.Y. and Zhao, X. (2005), "Free vibration analysis of conical shells via the element-free kp-Ritz method", J. Sound Vib., 281(3-5), 627-645. https://doi.org/10.1016/j.jsv.2004.01.005.
- Malekzadeh, P. and Heydarpour, Y. (2013), "Free vibration analysis of rotating functionally graded truncated conical shells", Compos. Struct., 97, 176-188. https://doi.org/10.1016/j.compstruct.2012.09.047.
- Mehri, M., Asadi, H. and Wang, Q. (2016), "Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method", Comput. Meth. Appl. Mech. Eng., 303, 75-100. https://doi.org/10.1016/j.cma.2016.01.017.
- Moghaddam, S.M.F. and Ahmadi, H. (2020), "Active vibration control of truncated conical shell under harmonic excitation using piezoelectric actuator", Thin Wall. Struct., 151, 106642. https://doi.org/10.1016/j.tws.2020.106642.
- Najafov, A., Sofiyev, A. and Kuruoglu, N. (2014), "On the solution of nonlinear vibration of truncated conical shells covered by functionally graded coatings", Acta Mechanica, 225(2), 563-580. https://doi.org/10.1007/s00707-013-0980-5.
- Nayfeh, A.H. and Mook, D.T. (2008), Nonlinear Oscillations, John Wiley & Sons.
- Nejati, M., Asanjarani, A., Dimitri, R. and Tornabene, F. (2017), "Static and free vibration analysis of functionally graded conical shells reinforced by carbon nanotubes", Int. J. Mech. Sci., 130, 383-398. https://doi.org/10.1016/j.ijmecsci.2017.06.024.
- Nguyen, D.D., Tran, Q.Q. and Do, Q.C. (2018), "Nonlinear dynamic analysis and vibration of shear deformable piezoelectric-FGM truncated conical shell resting on elastic foundations inthermal environments", 2018 Theme Meeting on Multiscale Modelling of Materials for Sustainable Development (ACCMS), Hanoi, Vietnam, September.
- Nguyen, P.D., Quang, V.D., Anh, V.T.T. and Duc, N.D. (2019), "Nonlinear vibration of carbon nanotube reinforced composite truncated conical shells in thermal environment", Int. J. Struct. Stab. Dyn., 19(12), 1950158. https://doi.org/10.1142/S021945541950158X.
- Niu, Y., Wu, M., Yao, M. and Wu, Q. (2022), "Dynamic instability and internal resonance of rotating pretwisted composite airfoil blades", Chaos Solit. Fract., 165, 112835. https://doi.org/10.1016/j.chaos.2022.112835.
- Niu, Y., Yao, M. and Wu, Q. (2022), "Resonance in dangerous mode and chaotic dynamics of a rotating pre-twisted graphene reinforced composite blade with variable thickness", Compos. Struct., 288, 115422. https://doi.org/10.1016/j.compstruct.2022.115422.
- Raju, K.K. and Rao, G.V. (1976), "Large amplitude asymmetric vibrations of some thin shells of revolution", J. Sound Vib., 44(3), 327-333. https://doi.org/10.1016/0022-460X(76)90505-8.
- Reddy, J. and Chin, C. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21(6), 593-626. https://doi.org/10.1080/01495739808956165.
- Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press.
- Roh, J.H., Woo, J.H. and Lee, I. (2008), "Thermal post-buckling and vibration analysis of composite conical shell structures using layerwise theory", J. Therm. Stress., 32(1-2), 41-64. https://doi.org/10.1080/01495730802540031.
- Rougui, M., Moussaoui, F. and Benamar, R. (2007), "Geometrically non-linear free and forced vibrations of simply supported circular cylindrical shells: A semi-analytical approach", Int. J. Nonlin. Mech., 42(9), 1102-1115. https://doi.org/10.1016/j.ijnonlinmec.2007.06.004.
- Shakouri, M. (2019), "Free vibration analysis of functionally graded rotating conical shells in thermal environment", Compos. Part B: Eng., 163, 574-584. https://doi.org/10.1016/j.compositesb.2019.01.007.
- Sheng, G. and Wang, X. (2017), "The non-linear vibrations of rotating functionally graded cylindrical shells", Nonlin. Dyn., 87(2), 1095-1109. https://doi.org/10.1007/s11071-016-3100-y.
- Singha, T.D., Rout, M., Bandyopadhyay, T. and Karmakar, A. (2020), "Free vibration analysis of rotating pretwisted composite sandwich conical shells with multiple debonding in hygrothermal environment", Eng. Struct., 204, 110058. https://doi.org/10.1016/j.engstruct.2019.110058.
- Sofiyev, A. (2012), "The non-linear vibration of FGM truncated conical shells", Compos. Struct., 94(7), 2237-2245. https://doi.org/10.1016/j.compstruct.2012.02.005.
- Sofiyev, A. (2014), "The combined influences of heterogeneity and elastic foundations on the nonlinear vibration of orthotropic truncated conical shells", Compos. Part B: Eng., 61, 324-339. https://doi.org/10.1016/j.compositesb.2014.01.047.
- Sofiyev, A. (2019), "Review of research on the vibration and buckling of the FGM conical shells", Compos. Struct., 211, 301-317. https://doi.org/10.1016/j.compstruct.2018.12.047.
- Sofiyev, A. and Kuruoglu, N. (2015), "Large-amplitude vibration of the geometrically imperfect FGM truncated conical shell", J. Vib. Control, 21(1), 142-156. https://doi.org/10.1177/1077546313480998.
- Talebitooti, M. (2013), "Three-dimensional free vibration analysis of rotating laminated conical shells: Layerwise differential quadrature (LW-DQ) method", Arch. Appl. Mech., 83(5), 765-781. https://doi.org/10.1007/s00419-012-0716-3.
- Talebitooti, M. (2018), "Thermal effect on free vibration of ring-stiffened rotating functionally graded conical shell with clamped ends", Mech. Adv. Mater. Struct., 25(2), 155-165. https://doi.org/10.1080/15376494.2016.1255809.
- Talebitooti, M., Daneshjou, K. and Talebitooti, R. (2013), "Vibration and critical speed of orthogonally stiffened rotating FG cylindrical shell under thermo-mechanical loads using differential quadrature method", J. Therm. Stress., 36(2), 160-188. https://doi.org/10.1080/01495739.2013.764807.
- Tong, L. (1996), "Effect of axial load on free vibration of orthotropic truncated conical shells". J. Vib. Acoust., 118(2), 164-168. https://doi.org/10.1115/1.2889644.
- Torabi, J. and Ansari, R. (2018), "Thermally induced mechanical analysis of temperature-dependent FG-CNTRC conical shells", Struct. Eng. Mech., 68(3), 313-323. https://doi.org/10.12989/sem.2018.68.3.313.
- Ueda, T. (1979), "Non-linear free vibrations of conical shells", J. Sound Vib., 64(1), 85-95. https://doi.org/10.1016/0022-460X(79)90574-1.
- Vu, T.T.A. and Pham, D.N. (2018), "Investigation on nonlinear dynamic response and free vibration of FG-CNTs reinforced composite truncated conical shells in the thermal environment", 2018 Theme Meeting on Multiscale Modelling of Materials for Sustainable Development (ACCMS), Hanoi, Vietnam, September.
- Wang, Y., Ye, C. and Zu, J. (2018), "Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities", Appl. Math. Mech., 39(11), 1587-1604. https://doi.org/10.1007/s10483-018-2388-6.
- Wang, Y.Q. (2018), "Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state", Acta Astronautica, 143, 263-271. https://doi.org/10.1016/j.actaastro.2017.12.004.
- Wang, Y.Q., Ye, C. and Zu, J.W. (2019), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022.
- Weingarten, V.I. (1965), "Free vibrations of ring-stiffened conical shells", AIAA J., 3(8), 1475-1481. https://doi.org/10.2514/3.3171.
- Wu, Q., Yao, M., Li, M., Cao, D. and Bai, B. (2021), "Nonlinear coupling vibrations of graphene composite laminated sheets impacted by particles", Appl. Math. Model., 93, 75-88. https://doi.org/10.1016/j.apm.2020.12.008.
- Xu, C., Xia, Z. and Chia, C. (1996), "Non-linear theory and vibration analysis of laminated truncated, thick, conical shells", Int. J. Nonlin. Mech., 31(2), 139-154. https://doi.org/10.1016/0020-7462(95)00051-8.
- Xu, H., Wang, Y.Q. and Zhang, Y. (2021), "Free vibration of functionally graded graphene platelet-reinforced porous beams with spinning movement via differential transformation method", Arch. Appl. Mech., 91(12), 4817-4834. https://doi.org/10.1007/s00419-021-02036-7.
- Yang, S., Zhang, W., Hao, Y. and Niu, Y. (2019), "Nonlinear vibrations of FGM truncated conical shell under aerodynamics and in-plane force along meridian near internal resonances", Thin Wall. Struct., 142, 369-391. https://doi.org/10.1016/j.tws.2019.04.024.
- Ye, C. and Wang, Y.Q. (2021), "Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: Internal resonances", Nonlin. Dyn., 104(3), 2051-2069. https://doi.org/10.1007/s11071-021-06401-7.