DOI QR코드

DOI QR Code

Experimental and numerical analyses of RC beams strengthened in compression with UHPFRC

  • Thomaz E.T. Buttignol (Department of Structures, University of Campinas) ;
  • Eduardo C. Granato (Department of Structural and Geotechnical Engineering, Polytechnic School at the University of Sao Paulo) ;
  • Tulio N. Bittencourt (Department of Structural and Geotechnical Engineering, Polytechnic School at the University of Sao Paulo) ;
  • Luis A.G. Bitencourt Jr. (Department of Structural and Geotechnical Engineering, Polytechnic School at the University of Sao Paulo)
  • Received : 2022.07.14
  • Accepted : 2023.01.26
  • Published : 2023.02.25

Abstract

This paper aims to better understand the bonding behavior in Reinforced Concrete beams strengthened with an Ultra-High Performance Fiber Reinforced Concrete (RCUHPFRC) layer on the compression side using experimental tests and numerical analyses. The UHPFRC mix design was obtained through an optimization procedure, and the characterization of the materials included compression and slant shear tests. Flexural tests were carried out in RC beams and RC-UHPFRC beams. The tests demonstrated a debonding of the UHPFRC layer. In addition, 3D finite element analyses were carried out in the Abaqus CAE program, in which the interface is modeled considering a zero-thickness cohesive-contact approach. The cohesive parameters are investigated, aiming to calibrate the numerical models, and a sensitivity analysis is performed to check the reliability of the assumed cohesive parameters and the mesh size. Finally, the experimental and numerical values are compared, showing a good approximation for both the RC beams and the RC strengthened beams.

Keywords

Acknowledgement

Eduardo Costa Granato acknowledges that this study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil (CAPES)-Finance Code 001. The authors would also like to thank GCP Applied Technologies and Tecnosil for providing the materials for the experimental tests. Luis A.G. Bitencourt Jr. would also like to extend his acknowledgments to the financial support of the Brazilian National Council for Scientific and Technological Development-CNPq (310401/2019-4).

References

  1. ABAQUS (2014), ABAQUS Documentation, Dassault SystEmes, Providence, RI, USA. 
  2. ABNT NBR 5739 (2018), Concreto: Ensaio de Compressao de Corpos de Prova Cilindricos, Rio de Janeiro. (in Portuguese) 
  3. ABNT NBR 7222 (2011), Concreto e Argamassa-Determinacao da Resistencia a Tracao Por Com-Pressao Diametral de Corpos de Prova Cilindricos, Rio de Janeiro. (in Portuguese) 
  4. ABNT NBR 8522 (2021), Concreto Endurecido-Determinacao dos Modulos de Elasticidade e de Deformacao, Parte 1: Modulos Estaticos a Compressao, Rio de Janeiro. (in Portuguese) 
  5. ACI 546 (2006), Guide for the Selection of Materials for the Repair of Concrete, American Concrete Institute (ACI), United States. 
  6. Ali, B., Sabry, F. and Mansour, W.N. (2020), "Flexural strengthening of RC one way solid slab with strain hardening cementitious composites (SHCC)", Adv. Concrete Constr., 9(5), 511-527. https://doi.org/10.12989/acc.2020.9.5.511. 
  7. Al-Osta, M.A., Isa, M.N., Baluch, M.H. and Rahman, M.K. (2017), "Flexural behavior of rein- forced concrete beams strengthened with ultra-high performance fiber reinforced concrete", Constr. Build. Mater., 134, 279-296. https://doi.org/10.1016/j.conbuildmat.2016.12.094. 
  8. Andreasen, A.H.M. (1930), "Ueber die beziehung zwischen kornabstufung und zwischenraum in produkten aus losen kornern (mit einigen experimenten)", 50, 109-118. https://doi.org/10.1007/BF01422986. 
  9. Ascione, L. and Feo, L. (2000), "Modeling of composite/concrete interface of RC beams strengthened with composite laminates", Compos. Part B: Eng., 31(6), 535-540. https://doi.org/10.1016/S1359-8368(99)00063-3. 
  10. Barenblatt, G.I. (1962), "The mathematical theory of equilibrium cracks in brittle fracture", Adv. Appl. Mech., 7, 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2. 
  11. Bazant, P.A. and Prat, P.C. (1988), "Measurement of mode III fracture energy of concrete", Nucl. Eng. Des., 106(1), 1-8. https://doi.org/10.1016/0029-5493(88)90265-8. 
  12. Bazant, Z.P. and Pfeiffer, P.A. (1986). "Shear fracture tests of concrete", Mater. Struct., 19, 111-121. https://doi.org/10.1007/BF02481755. 
  13. Benzeggagh, M.L. and Kenane, M. (1996), "Measurement of mixed-mode delamination fracture tough- ness of unidirectional glass/epoxy composites with mixed-mode bending apparatus", Compos. Sci. Technol., 56(4), 439-449. https://doi.org/10.1016/0266-3538(96)00005-X. 
  14. Brouwers, H.J.H. and Radix, H. (2005), "Self-compacting concrete: The role of the particle size distribution", Proceedings of the First International Symposium on Design, Performance and Use of SCC, Hunan, China, May. 
  15. Bruwiler, E. and Denarie, E. (2013), "Rehabilitation and strengthening of concrete structures using ultra-high performance fibre reinforced concrete", Struct. Eng. Int., 23(4), 450-457. https://doi.org/10.2749/101686613X13627347100437. 
  16. BS EN 12615 (1999), Products and Systems for the Protection and Repair of Concrete Structures, Test Methods, Determination of Slant Shear Strength. 
  17. Buttignol, T.E.T., Sousa, J.L.A.O. and Bittencourt, T.N. (2017), "Ultra high-performance fiber-reinforced concrete (UHPFRC): A review of material properties and design procedures", Revista IBRACON de Estruturas e Materiais, 10, 957-971. https://doi.org/10.1590/S1983-41952017000400011. 
  18. Camanho, P.P. and Davila, C.G. (2002), "Mixed-mode decohesion finite elements for the simulation of delamination in composite materials", No. NAS 1.15: 211737. 
  19. Camanho, P.P., Davila, C.G. and de Moura, M.F. (2003), "Numerical simulation of mixed-mode progressive delamination in composite materials", J. Compos. Mater., 37(16), 1415-1438. https://doi.org/10.1177/0021998303034505. 
  20. Cedolin, L. (2010), Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories, World Scientific. 
  21. Courard, L., Piotrowski, T. and Garbacz, A. (2014), "Near-to-surface properties affecting bond strength in concrete repair", Cement Concrete Compos., 46, 73-80. https://doi.org/10.1016/j.cemconcomp.2013.11.005. 
  22. Daudeville, L., Allix, O. and Ladeveze, P. (1995), "Delamination analysis by damage mechanics: Some applications", Compos. Eng., 5(1), 17-24. https://doi.org/10.1016/0961-9526(95)93976-3. 
  23. de Oliveira Junior, L.A., dos Santos Borges, V.E., Danin, A.R., Machado, D.V.R., de Lima Araujo, D., El Debs, M.K. and Rodrigues, P.F. (2010), "Stress-strain curves for steel fiber-reinforced concrete in com- pression", Materia, 15(2), 260-266. https://doi.org/10.1590/S1517-70762010000200025. 
  24. Dugdale, D.S. (1960), "Yielding of steel sheets containing slits", J. Mech. Phys. Solid., 8(2), 100-104. https://doi.org/10.1016/0022-5096(60)90013-2. 
  25. Duvaut, G. and Lions, J. L. (1972), "Les inequations en mecanique et en physique", Dunod, Paris.
  26. Eurocode 2 (2004), Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings. 
  27. Farzad, M., Shafieifar, M. and Azizinamini, A. (2019), "Experimental and numeri- cal study on bond strength between conventional concrete and ultra high-performance concrete (UHPC)", Eng. Struct., 186, 297-305. https://doi.org/10.1016/j.engstruct.2019.02.030. 
  28. fib Model Code (2013), fib Model Code for Concrete Structures 2010, International Federation for Structural Concrete, Berlin, Germany. 
  29. Funk, J.E. and Dinger, D.R. (2013), Predictive Process Control of Crowded Particulate Suspensions: Applied to Ceramic Manufacturing, Springer Science & Business Media. 
  30. Ganesh, P. and Ramachandra, A.M. (2020), "Simulation of surface preparations to predict the bond behaviour between normal strength concrete and ultra-high performance concrete", Constr. Build. Mater., 250, 118871. https://doi.org/10.1016/j.conbuildmat.2020.118871. 
  31. Ghosh, G., Duddu, R. and Annavarapu, C. (2020), "A stabilized finite element method for delamination analysis of composites using cohesive elements", arXiv preprint arXiv:2008.09015. 
  32. Grassl, P., Lundgren, K. and Gylltoft, K. (2002), "Concrete in compression: A plasticity theory with a novel hardening law", Int. J. Solid. Struct., 39(20), 5205-5223. https://doi.org/10.1016/S0020-7683(02)00408-0. 
  33. Hassan, A.M.T., Jones, S.W. and Mahmud, G.H. (2012), "Experimental test methods to deter- mine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC)", Constr. Build. Mater., 37, 874-882. https://doi.org/10.1016/j.conbuildmat.2012.04.030. 
  34. Heidari-Rarani, M. and Sayedain, M. (2019), "Finite element modeling strategies for 2D and 3D delamination propagation in composite DCB specimens using VCCT, CZM and XFEM approaches", Theor. Appl. Fract. Mech., 103, 102246. https://doi.org/10.1016/j.tafmec.2019.102246. 
  35. Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7. 
  36. Hordijk. D.A. (1991), "Local approach to fatigue of concrete", PhD Thesis, Delft University of Technology. 
  37. Husken, G. (2010), "A multifunctional design approach for sustainable concrete: With application to concrete mass products", PhD Thesis, Built Environment. 
  38. Husken, G. and Brouwers, H.J.H. (2008), "A new mix design concept for earth-moist concrete: A theoretical and experimental study", Cement Concrete Res., 38(10), 1246-1259 https://doi.org/10.1016/j.cemconres.2008.04.002. 
  39. Jiang, J.F. and Wu, Y.F. (2012), "Identification of material parameters for drucker-prager plasticity model for FRP confined circular concrete columns", Int. J. Solid. Struct., 49(3), 445-456. https://doi.org/10.1016/j.ijsolstr.2011.10.002. 
  40. Jin, Z.H. and Sun, C.T. (2005), "Cohesive zone modeling of interface fracture in elastic bimaterials", Eng. Fract. Mech., 72(12), 1805-1817. https://doi.org/10.1016/j.engfracmech.2004.09.011. 
  41. Khayat, K.H. and Libre, N.A. (2014), "Roller compacted concrete: Field evaluation and mixture optimization", Tech Report, Missouri University of Science and Technology. 
  42. Krahl, P.A. Gidrao, G.M.S. and Carrazedo, R. (2018), "Compressive behavior of UHPFRC under quasi-static and seismic strain rates considering the effect of fiber content", Constr. Build. Mater., 188, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.08.121. 
  43. Lampropoulos, A.P., Paschalis, S.A., Tsioulou, O.T. and Dritsos, S.E. (2016), "Strengthening of reinforced concrete beams using ultra high performance fibre reinforced concrete (UHPFRC)", Eng. Struct., 106, 370-384. https://doi.org/10.1016/j.engstruct.2015.10.042. 
  44. Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892). 
  45. Lee, M.G., Wang, Y.C. and Chiu, C.T. (2007), "A preliminary study of reactive powder concrete as a new repair material", Constr. Build. Mater., 21(1), 182-189. https://doi.org/10.1016/j.conbuildmat.2005.06.024. 
  46. Lee, S.M. (1993), "An edge crack torsion method for mode III delamination fracture testing", J. Compos. Technol. Res., 15(3), 193-201. https://doi.org/10.1520/CTR10369J. 
  47. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solid. Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4. 
  48. Mansour, W. (2021), "Numerical analysis of the shear behavior of FRP-strengthened continuous RC beams having web openings", Eng. Struct., 227, 111451. https://doi.org/10.1016/j.engstruct.2020.111451. 
  49. Mansour, W. and Fayed, S. (2021), "Effect of interfacial surface preparation technique on bond characteristics of both NSC-UHPFRC and NSC-NSC composites", Struct., 29, 147-166. https://doi.org/10.1016/j.istruc.2020.11.010. 
  50. Mansour, W., Sakr, M., Seleemah, A.A., Tayeh, B.A. and Khalifa, T.M. (2022), "Bond behavior between concrete and prefabricated Ultra High-Performance fiber-reinforced concrete (UHPFRC) plates", Struct. Eng. Mech., 81(3), 305-316. https://doi.org/10.12989/sem.2022.81.3.305. 
  51. Mansour, W., Sakr, M., Mohammed, Sleemah, A., Tayeh, B. A. and Khalifa, T. (2021), "Development of shear capacity equations for RC beams strengthened with UHPFRC", Comput. Concrete, 27(5), 473-487. https://doi.org/10.12989/cac.2021.27.5.473. 
  52. Moes, M. and Belytschko, T. (2002), "Extended finite element method for cohesive crack growth", Eng. Fract. Mech., 69(7), 813-833. https://doi.org/10.1016/S0013-7944(01)00128-X. 
  53. Momayez, A., Ehsani, M.R., Ramezanianpour, A.A. and Rajaie, H. (2005), "Comparison of methods for evaluating bond strength between concrete substrate and repair materials", Cement Concrete Res., 35(4), 748-757. https://doi.org/10.1016/j.cemconres.2004.05.027. 
  54. Munoz, M.A.C., Harris, D.K., Ahlborn, T.M. and Froster, D.C. (2014), "Bond performance between ultrahigh-performance concrete and normal-strength concrete", J. Mater. Civil Eng., 26(8), 04014031. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000890. 
  55. Oztekin, E., Pul, S. and Husem, M. (2016), "Experimental determination of Drucker-Prager yield criterion parameters for normal and high strength concretes under triaxial compression", Constr. Build. Mater., 112, 725-732. https://doi.org/10.1016/j.conbuildmat.2016.02.127. 
  56. Pan, X., Shi, Z., Shi, C., Ling, T.C. and Li, N. (2017), "A review on concrete surface treatment Part I: Types and mechanisms", Constr. Build. Mater., 132, 578-590. https://doi.org/10.1016/j.conbuildmat.2016.12.025. 
  57. Park, K., Choi, H. and Paulino, G.H. (2016), "Assessment of cohesive traction-separation relationships in Abaqus: A comparative study", Mech. Res. Commun., 78, 71-78. https://doi.org/10.1016/j.mechrescom.2016.09.004. 
  58. Paschalis, S.A., Lampropoulos, A.P. and Tsioulou, O. (2018), "Experimental and numerical study of the performance of ultra high performance fiber reinforced concrete for the flexural strengthening of full scale reinforced concrete members", Constr. Build. Mater., 186, 351-366. https://doi.org/10.1016/j.conbuildmat.2018.07.123. 
  59. Prado, L.P., Carrazedo, R. and El Debs, M.K. (2021), "Interface strength of high-strength concrete to ultra-high-performance concrete", Eng. Struct., 252, 113591. https://doi.org/10.1016/j.engstruct.2021.113591. 
  60. Ramachandra M.A., Aravindan, M. and Ganesh, P. (2018), "Prediction of flexural behavior of RC beams strengthened with ultra high performance fiber reinforced concrete", Struct. Eng. Mech., 65(3), 315-325. https://doi.org/10.12989/sem.2018.65.3.315. 
  61. Ramachandra Murthy, A., Karihaloo, B.L. and Priya, D.S. (2018), "Flexural behavior of RC beams retrofitted with ultra-high strength concrete", Constr. Build. Mater., 175, 815-824. https://doi.org/10.1016/j.conbuildmat.2018.04.174. 
  62. Reinhardt, H.W. and Xu, S.A. (2000), "A practical testing approach to determine mode II fracture energy GIIF for concrete", Int. J. Fract., 105(2), 107-125. https://doi.org/10.1023/A:1007649004465. 
  63. Ribeiro, J.G., Vieira, G.S. and Zoccoli, R.O. (2020), "Experimental analysis of the structural behavior of different types of shear connectors in steel-concrete composite beams", Revista IBRACON de Estruturas e Materiais, 13(6), 1. https://doi.org/10.1590/S1983-41952020000600010. 
  64. Rossi, P., Arca, A., Parant, E. and Fakhri, P. (2005), "Bending and compressive behaviours of a new cement composite", Cement Concrete Res., 35(1), 27-33. https://doi.org/10.1016/j.cemconres.2004.05.043. 
  65. Safdar, M., Matsumoto, T. and Kakuma, K. (2016), "Flexural behavior of reinforced concrete beams repaired with ultra-high performance fiber reinforced concrete (UHPFRC)", Compos. Struct., 157, 448-460. https://doi.org/10.1016/j.compstruct.2016.09.010. 
  66. Sakr, M.A., Sleemah, A.A., Khalifa, T.M. and Mansour, W. (2018), "Behavior of RC beams strengthened in shear with ultra-high performance fiber reinforced concrete (UHPFRC)", MATEC Web Conf., 199, 09002. https://doi.org/10.1051/matecconf/201819909002. 
  67. Santos, P.M.D.. Julio, E.N.B.S. and Silva, V.D. (2007), "Correlation between concrete- to-concrete bond strength and the roughness of the substrate surface", Constr. Build. Mater., 21(8), 1688-1695. https://doi.org/10.1016/j.conbuildmat.2006.05.044. 
  68. Tanarslan, H.M., Alver, N., Jahangiri, R., Yalcinkaya, C. and Yazici, H. (2017), "Flexural strengthening of RC beams using uhpfrc laminates: Bonding techniques and rebar addition", Constr. Build. Mater., 155, 45-55. https://doi.org/10.1016/j.conbuildmat.2017.08.056. 
  69. Tayeh, B.A., Abu Bakar, B.H., Megat Johari, M.A. and Voo, Y.L. (2013), "Utilization of ultra-high performance fibre concrete (UHPFC) for rehabilitation-A review", Procedia Eng., 54, 525-538. https://doi.org/10.1016/j.proeng.2013.03.048. 
  70. Tsioulou, O.T., Lampropoulos, A.P. and Dritsos, S.E. (2013), "Experimental investigation of interface behaviour of RC beams strengthened with concrete layers", Constr. Build. Mater., 40, 50-59. https://doi.org/10.1016/j.conbuildmat.2012.09.093. 
  71. Tung, N.D. and Tue, N.V. (2015), "Post-peak behavior of concrete specimens un- dergoing deformation localization in uniaxial compression", Constr. Build. Mater., 99, 109-117. https://doi.org/10.1016/j.conbuildmat.2015.09.013. 
  72. Turon, A., Davila, C.G., Camanho, P.P. and Costa, J. (2007), "An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models", Eng. Fract. Mech., 74(10), 1665-1682. https://doi.org/10.1016/j.engfracmech.2006.08.025. 
  73. Valikhani, A., Jahromi, A.J., Mantawy, I.M. and Azizinamini, A. (2020a), "Numerical modelling of concrete-to-UHPC bond strength", Mater., 13(6), 1379. https://doi.org/10.3390/ma13061379. 
  74. Valikhani, A., Jahromi, A.J., Mantawy, I.M. and Azizinamini, A. (2020b), "Experimental evaluation of concrete-to-UHPC bond strength with correlation to surface roughness for repair application", Constr. Build. Mater., 238, 117753. https://doi.org/10.1016/j.conbuildmat.2019.117753. 
  75. Valipour, M. and Khayat, K.H. (2020), "Debonding test method to evaluate bond strength between UHPC and concrete substrate", Mater. Struct., 53, 1-10. https://doi.org/10.1617/s11527-020-1446-6. 
  76. Vermeer, P.A. and De Borst, R. (1984), "Non-associated plasticity for soils, concrete and rock", HERON, 29(3), 1. 
  77. Yang, Q. and Cox, B. (2005), "Cohesive models for damage evolution in laminated composites", Int. J. Fract., 133, 107-137. https://doi.org/10.1007/s10704-005-4729-6. 
  78. Yin, H., Teo, W. and Shirai, K. (2017), "Experimental investigation on the behaviour of reinforced concrete slabs strengthened with ultra-high performance concrete", Constr. Build. Mater., 155, 463-474. https://doi.org/10.1016/j.conbuildmat.2017.08.077. 
  79. Yu, Q.L., Spiesz, P. and Brouwers, H.J.H. (2013), "Development of cement-based lightweight composites-Part 1: Mix design methodology and hardened properties", Cement Concrete Compos., 44, 17-29. https://doi.org/10.1016/j.cemconcomp.2013.03.030. 
  80. Yu, R., Spiesz, P. and Brouwers, H.J.H. (2014), "Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC)", Cement Concrete Res., 56, 29-39. https://doi.org/10.1016/j.cemconres.2013.11.002. 
  81. Zhang, Y., Zhu, P., Wang, X. and Wu, J. (2020), "Shear properties of the interface between ultra-high performance concrete and normal strength concrete", Constr. Build. Mater., 248, 118455. https://doi.org/10.1016/j.conbuildmat.2020.118455. 
  82. Zhang, Y., Zhu, Y., Yeseta, M., Meng, D., Shao, X., Dang, Q. and Chen, G. (2019), "Flexural behaviors and capacity prediction on damaged reinforcement concrete (RC) bridge deck strengthened by ultra-high performance concrete (UHPC) layer", Constr. Build. Mater., 215, 347-359. https://doi.org/10.1016/j.conbuildmat.2019.04.229. 
  83. Zhao, L., Wang, Y., Zhang, J., Gong, Y., Hu, N. and Li, N. (2017), "Xfem- based model for simulating zigzag delamination growth in laminated composites under mode I loading", Compos. Struct., 160, 1155-1162. https://doi.org/10.1016/j.compstruct.2016.11.006. 
  84. Zhao, X.G. and Cai, M. (2010), "A mobilized dilation angle model for rocks", Int. J. Rock Mech. Min. Sci., 47(3), 368-384. https://doi.org/10.1016/j.ijrmms.2009.12.007. 
  85. Zhong, J., Yan, Q., Wu, J. and Zhang, Z. (2019), "Mechanism research of slip effect between frictional laminated beams", Adv. Mech. Eng., 11(3), 1687814019828461. https://doi.org/10.1177/1687814019828461. 
  86. Zhou, Y., Xiao, Y., Wu, Q. and Xue, Y. (2021), "A multi-state progressive cohesive law for the prediction of unstable propagation and arrest of Mode-I delamination cracks in composite laminates", Eng. Fract. Mech., 248, 107684. https://doi.org/10.1016/j.engfracmech.2021.107684. 
  87. Zhu, Y., Zhang, Y., Hussein, H.H. and Chen, G. (2020), "Flexural strengthening of reinforced concrete beams or slabs using ultra-high performance concrete (UHPC): A state of the art review", Eng. Struct., 205, 110035. https://doi.org/10.1016/j.engstruct.2019.110035.