References
- Ahmetolan, S. and Demirci, A. (2014), "Interaction of nonlinear SH waves in a two layered elastic plate", ICSV21, Beijing, China, July.
- Alshits, V.I., Deschamps, M. and Lyubimov, V.N. (2005), "Dispersion anomalies of shear horizontal guided waves in two- and three-layered plates", J. Acoust. Soc. Am., 118, 2850-2859. https://doi.org/10.1121/1.2046807.
- Auld, B.A., Chimenti, D.E. and Shull, P.J. (1996), "Shear horizontal wave propagation in periodically layered composites," IEEE Tran. Ultrason., Ferroelec. Frequen. Control, 43(2), 319-325. https://doi.org/10.1109/58.485959.
- Castaings, M. and Hosten, B. (2001), "Lamb and SH waves generated and detected by air-coupled ultrasonic transducers in composite material plates", NDT E Int., 34(4), 249-258. https://doi.org/10.1016/S0963-8695(00)00065-7.
- Chaudhary, S., Kaushik, V.P. and Tomar, S.K. (2005), "Transmission of shear waves through a self-reinforced layer sandwiched between two inhomogeneous viscoelastic half-spaces", Int. J. Mech. Sci., 47(9), 1455-1472. https://doi.org/10.1016/j.ijmecsci.2005.04.011.
- Chimenti, D.E. (1997), "Guided waves in plates and their use in materials characterization", Appl. Mech. Rev., 50(5), 247-284. https://doi.org/10.1115/1.3101707.
- Djeran-Maigre, I. and Kuznetsov, S.V. (2014), "Velocities, dispersion, and energy of SH-waves in anisotropic laminated plates", Acoust. Phys., 60, 200-207. https://doi.org/10.1134/S106377101402002X.
- Fakhrabadi, M.M.S. (2015), "Size effects on nanomechanical behaviors of nanoelectronics devices based on consistent couple-stress theory", Int. J. Mech. Sci., 92, 146-153. https://doi.org/10.1016/j.ijmecsci.2014.12.009.
- Fan, H. and Xu, L. (2018), "Love wave in a classical linear elastic half-space covered by a surface layer described by the couple stress theory", Acta Mechanica, 229, 5121-5132. https://doi.org/10.1007/s00707-018-2293-1.
- Gitis, A. and Sauer, D.U. (2016), "The propagation of horizontally polarized shear waves in plates bordered with viscous liquid", Ultrasonic., 71, 264-270. https://doi.org/10.1016/j.ultras.2016.06shar.018.
- Graff, K.F. (1975), Wave Motion in Elastic Solids, Dover Publications, New York, USA.
- Hadjesfandiari, A.R. and Dargush, G.F. (2011), "Couple stress theory for solids", Int. J. Solid. Struct., 48(18), 2496-2510. https://doi.org/10.1016/j.ijsolstr.2011.05.002.
- Ilyashenko, A. and Kuznetsov, S. (2018), "SH waves in anisotropic (monoclinic) media", J. Appl. Math. Phys., 69, 17. https://doi.org/10.1007/s00033-018-0916-y.
- Jiangong, Y. (2011), "Viscoelastic shear horizontal wave in graded and layered plates", Int. J. Solid. Struct., 48(16-17), 2361-2372. https://doi.org/10.1016/j.ijsolstr.2011.04.011.
- Josse, F., Bender, F. and Cernosek, R.W. (2001), "Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids", Anal. Chem., 73(24), 5937-5944. https://doi.org/10.1021/ac010859e.
- Kimura, T., Omura, M., Kishimoto, Y. and Hashimoto, K. (2019), "Comparative study of acoustic wave devices using thin piezoelectric plates in the 3-5-ghz range", IEEE Tran. Microw. Theor. Techniq., 67(3), 915-921. https://doi.org/10.1109/TMTT.2018.2890661.
- Kuznetsov, S.V. (2006), "SH-waves in laminated plates", Quart. Appl. Math., 64, 153-165. https://doi.org/10.1090/S0033-569X-06-00992-1.
- Miao, H. and Li, F. (2021), "Shear horizontal wave transducers for structural health monitoring and nondestructive testing: A review", Ultrasonic., 114, 106355. https://doi.org/10.1016/j.ultras.2021.106355.
- Nejad, M.Z., Hadi, A. and Farajpour, A. (2017), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., 63(2), 161-169. https://doi.org/10.12989/sem.2017.63.2.161.
- Nobili, A. (2021), "Asymptotically consistent size-dependent plate models based on the couple-stress theory with micro-inertia", Eur. J. Mech.-A/Solid., 89, 104316. https://doi.org/10.1016/j.euromechsol.2021.104316.
- Pandit, D.K., Kundu, S. and Gupta, S. (2017), "Analysis of dispersion and absorption characteristics of shear waves in sinusoidally corrugated elastic medium with void pores", Roy. Soc. Open Sci., 4, 160511. https://doi.org/10.1098/rsos.160511.
- Saitoh, T. and Ishiguro, A. (2021), "Surface crack detection in a thin plate using time reversal analysis of SH guided waves", Struct. Eng. Mech., 80(3), 243-251. https://doi.org/10.12989/sem.2021.80.3.243.
- Sharma, V. and Kumar, S. (2016), "Influence of microstructure, heterogeneity and internal friction on SH waves propagation in a viscoelastic layer overlying a couple stress substrate", Struct. Eng. Mech., 57(4), 703-716. https://doi.org/10.12989/sem.2016.57.4.703.
- Sharma, V. and Kumar, S. (2018), "Dispersion of rayleigh waves in a microstructural couple stress substrate loaded with liquid layer under the effects of gravity", Arch. Acoust., 43(1), 11-20. https://doi.org/10.24425/118076.
- Sharma, V., Goyal, R. and Kumar, S. (2020), "Love waves in a layer with void pores over a microstructural couple stress substrate with corrugated boundary surfaces", J. Brazil. Soc. Mech. Sci. Eng., 42, 1-16. https://doi.org/10.1007/s40430-020-2262-1.
- Simonetti, F. and Cawley, P. (2004), "On the nature of shear horizontal wave propagation in elastic plates coated with viscoelastic materials", Proc. Roy. Soc. London-A, 460(2048), 2197-2221. https://doi.org/10.1098/rspa.2004.1284.
- Simonova, K., Honzik, P., Bruneau, M. and Gatignol, P. (2020), "Modelling approach for MEMS transducers with rectangular clamped plate loaded by a thin fluid layer", J. Sound Vib., 473, 115246. https://doi.org/10.1016/j.jsv.2020.115246.
- Singh, A.K., Agarwalla, S., Chaki, M.S. and Chattopadhyay, A. (2021), "Shear wave propagation in a slightly compressible finitely deformed layer over a foundation with pre-stressed fibre-reinforced stratum and dry sandy viscoelastic substrate", Wave. Random Complex Media, 31(5), 847-866. https://doi.org/10.1080/17455030.2019.1631503.
- Singh, A.K., Ray, A. and Chattopadhyay, A. (2019), "Analytical study on propagation of g-type waves in a transversely isotropic substrate beneath a stratum considering couple stress", Int. J. Geomech., 19(7), 04019071. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001454.
- Sun, K., Feng, H.C.Q. and Lei, X. (2020), "Propagation characteristics of ultrasonic guided waves in tram rails", Struct. Eng. Mech., 75(4), 435-444. https://doi.org/10.12989/sem.2020.75.4.435.
- Vardoulakis, I. and Georgiadis, H.G. (1997), "SH surface waves in a homogeneous gradient-elastic half-space with surface energy", J. Elast., 47, 147-165. https://doi.org/10.1023/A:1007433510623.
- Vavva, M.G., Protopappas, V.C., Gergidis, L.N., Charalambopoulos, A., Fotiadis, D.I. and Polyzos D. (2009), "Velocity dispersion of guided waves propagating in a free gradient elastic plate: Application to cortical bone", J. Acoust. Soc. Am., 125(5), 3414-27. https://doi.org/10.1121/1.3110203.
- Yang, P.S., Liu, S.W. and Sung, J.C. (2008), "Transient response of SH waves in a layered half-space with sub-surface and interface cracks", Appl. Math. Model., 32, 595-609. https://doi.org/10.1016/j.apm.2007.01.006.
- Zagrouba, M. and Bouhdima, M.S. (2021), "Investigation of SH wave propagation in piezoelectric plates", Acta Mechanica, 232, 3363-3379. https://doi.org/10.1007/s00707-021-02990-x.
- Zakharenko, A.A. (2013), "Fundamental modes of new dispersive SH-waves in piezoelectromagnetic plate", Pramana-J. Phys., 81, 819-827. https://doi.org/10.1007/s12043-013-0609-1.