참고문헌
- Adam, J.M., Parisi, F., Sagaseta, J. and Lu, X. (2018), "Research and practice on progressive collapse and robustness of building structures in the 21st century", Eng. Struct., 173, 122-149. https://doi.org/10.1016/j.engstruct.2018.06.082.
- ASCE (2017), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, Reston, VA, American Society of Civil Engineers.
- Banh, T.T. and Lee, D. (2018), "Multi-material topology optimization of Reissner-Mindlin plates using MITC4", Steel Compos. Struct., 27(1), 27-33. https://doi.org/10.12989/scs.2018.27.1.027.
- Behnam, B. (2018), "Fire structural response of the plasco building: A preliminary investigation report", Int. J. Civil Eng., 17(5), 563-580. https://doi.org/10.1007/s40999-018-0332-x.
- Behnam, B. and Abolghasemi, S. (2019), "Post-earthquake fire performance of a generic fireproofed steel moment resisting structure", J. Earthq. Eng., 23, 1-26. https://doi.org/10.1080/13632469.2019.1628128.
- Behnam, B., Shojaei, F. and Ronagh, H.R. (2019), "Seismic progressive-failure analysis of tall steel structures under beam-removal scenarios", Front. Struct. Civil Eng., 13(4), 904-917. https://doi.org/10.1007/s11709-019-0525-7.
- Bletzinger, K.U., Bischoff, M. and Ramm, E. (2000), "A unified approach for shear-locking-free triangular and rectangular shell finite elements", Comput. Struct., 75(3), 321-334. https://doi.org/10.1016/S0045-7949(99)00140-6.
- Cassiano, D., D'Aniello, M., Rebelo, C., Landolfo, R. and da Silva, L.S. (2016), "Influence of seismic design rules on the robustness of steel moment resisting frames", Steel Compos. Struct., 21(3), 479-500. https://doi.org/10.12989/scs.2016.21.3.479.
- CEN, E. (1993), Eurocode 3, Design of Steel Structures, Part 1- 9, General Rules and Rules for Buildings, European Commitee for Standardization.
- Dimyadi, J., Spearpoint, M. and Amor, R. (2008), "Sharing building information using the IFC data model for FDS fire simulation".
- Eng, T. (2011), PyroSim User Manual, The RJA Group Inc, Chicago, USA.
- Franssen, J.M. and Gernay, T. (2017), "Modeling structures in fire with SAFIR®: Theoretical background and capabilities", J. Struct. Fire Eng., 8(3), 300-323. https://doi.org/10.1108/JSFE-07-2016-0010.
- Fu, F. (2009), "Progressive collapse analysis of high-rise building with 3-D finite element modeling method", J. Construct. Steel Res., 65(6), 1269-1278. https://doi.org/10.1016/j.jcsr.2009.02.001.
- Grierson, D.E., Safi, M., Xu, L. and Liu, Y. (2005), "Simplified methods for progressive-collapse analysis of buildings", In Structures Congress 2005, Metropolis and Beyond, 1-8.
- Gross, J. and McGuire, W. (1983), "Progressive collapse resistant design", J. Struct. Eng., 109(1), 1-15. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:1(1).
- Hasemi, Y. and Tokunaga, R. (1984), "Flame geometry effects on the buoyant plumes from turbulent diffusion flames", Fire Sci. Technol., 4(1), 15-26. https://doi.org/10.3210/fst.4.15.
- Hasemi, Y., Yokobayashi, S., Wakamatsu, T. and Ptchelintsev, A. (1995), "Fire safety of building components exposed to a localized fire: Scope and experiments on ceiling/beam system exposed to a localized fire", Proceedings of ASIAFLAM, 351-361.
- Heskestad, G. (1988), "Fire plumes, flame height, and air entrainment", The SFPE Handbook of Fire Protection Engineering.
- Holicky, M., Meterna, A., Sedlacek, G. and Schleich, J.B. (2005), Implementation of Eurocodes, Handbook 5, Design of Buildings for the Fire Situation. Leonardo da Vinci Pilot Project: Luxemboug.
- Huang, Z., Burgess, I.W. and Plank, R.J. (1999), "The influence of shear connectors on the behaviour of composite steel-framed buildings in fire", J. Construct. Steel Res., 51(3), 219-237. https://doi.org/10.1016/S0143-974X(99)00028-0.
- Irschik, H. (1991), "Analogy between refined beam theories and the Bernoulli-Euler theory", Int. J. Solids Struct., 28(9), 1105-1112. https://doi.org/10.1016/0020-7683(91)90105-O.
- Izzuddin, B.A., Vlassis, A.G., Elghazouli, A.Y. and Nethercot, D.A. (2008), "Progressive collapse of multi-storey buildings due to sudden column loss-Part I: Simplified assessment framework", Eng. Struct., 30(5), 1308-1318. https://doi.org/10.1016/j.engstruct.2007.07.011.
- Jiang, J., Cai, W., Li, G. Q., Chen, W. and Ye, J. (2020), "Progressive collapse of steel-framed gravity buildings under parametric fires", Steel Compos. Struct., 36(4), 383-398. https://doi.org/10.12989/scs.2020.36.4.383.
- Kim, J. and An, D. (2009), "Evaluation of progressive collapse potential of steel moment frames considering catenary action", Struct. Des. Tall Spec. Build., 18(4): 455-465. https://doi.org/10.1002/tal.448.
- Kim, J. and Kim, T. (2009), "Assessment of progressive collapse-resisting capacity of steel moment frames", J. Construct. Steel Res., 65(1), 169-179. https://doi.org/10.1016/j.jcsr.2008.03.020
- Xin-zheng, L., Xu-chuan, L., Lie-ping, Y., Yi, L. and Dai-yuan, T. (2010), "Numerical models for earthquake induced progressive collapse of high-rise buildings", 工程力学, 27(11), 64-070. http://dx.doi.org/10.6052/j.issn.1000-4750.2010.02.0101.
- Mazza, F. (2015), "Seismic vulnerability and retrofitting by damped braces of fire-damaged rc framed buildings", Eng. Struct., 101, 179-192. https://doi.org/10.1016/j.engstruct.2015.07.027.
- Mazza, F. (2017), "Residual seismic load capacity of fire-damaged rubber bearings of r.c. base-isolated buildings", Eng. Fail. Anal., 79, 951-970. https://doi.org/10.1016/j.engfailanal.2017.06.011.
- Micallef, K., Sagaseta, J., Ruiz, M.F. and Muttoni, A. (2014), "Assessing punching shear failure in reinforced concrete flat slabs subjected to localised impact loading", Int. J. Impact Eng., 71, 17-33. https://doi.org/10.1016/j.ijimpeng.2014.04.003.
- Quiel, S. and Marjanishvili, S. (2012), "Fire resistance of a damaged steel building frame designed to resist progressive collapse", J. Perform. Construct. Facilities, 26(4), 402-409. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000248.
- Shan, S. and Li, S. (2020), "Fire-induced progressive collapse mechanisms of steel frames with partial infill walls", Structures, 25, 347-359. https://doi.org/10.1016/j.istruc.2020.03.023.
- Sun, R., Huang, Z. and Burgess, I.W. (2012), "Progressive collapse analysis of steel structures under fire conditions", Eng. Struct., 34, 400-413. https://doi.org/10.1016/j.engstruct.2011.10.009.
- Sun, Y. and Li, Q. (2018), "Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling", Int. J. Impact Eng., 112, 74-115. https://doi.org/10.1016/j.ijimpeng.2017.10.006.
- Tang, H., Deng, X., Jia, Y., Xiong, J. and Peng, C. (2019), "Study on the progressive collapse behavior of fully bolted RCS beam-to-column connections", Eng. Struct., 199, 109618. https://doi.org/10.1016/j.engstruct.2019.109618.
- Tian, L.M., Wei, J.P. and Hao, J.P. (2019), "Optimisation of long-span single-layer spatial grid structures to resist progressive collapse", Eng. Struct., 188, 394-405. https://doi.org/10.1016/j.engstruct.2019.03.025.
- UFC (2009), Design of Buildings to Resist Progressive Collapse, Unified Facilities Criteria. Washington (DC), Dept. of Defense: 245.
- Wang, F., Yang, J. and Pan, Z. (2020), "Progressive collapse behaviour of steel framed substructures with various beam-column connections, Eng. Fail. Anal., 109, 104399. https://doi.org/10.1016/j.engfailanal.2020.104399.
- Wang, J., Uy, B., Li, D. and Song, Y. (2020), "Progressive collapse analysis of stainless steel composite frames with beam-to-column endplate connections", Steel Compos. Struct., 36(4), 427-446. https://doi.org/10.12989/scs.2020.36.4.427.
- Xin-zheng, L., Xu-chuan, L., Lie-ping, Y., Yi, L. and Dai-yuan, T. (2010), "Numerical models for earthquake induced progressive collapse of high-rise buildings", 工程力学, 27(11), 64-070. https://doi.org/10.6052/j.issn.1000-4750.2010.02.0101.
- Zhang, Y.G., Zhou, H.T. and Wu, J.Z. (2013), "Mechanism of progressive collapse of spherical shell under severe earthquake", Beijing Gongye Daxue Xuebao(Journal of Beijing University of Technology), 39(4), 562-569.
- Zhu, Y.F., Chen, C.H., Yao, Y., Keer, L.M. and Huang, Y. (2018), "Dynamic increase factor for progressive collapse analysis of semi-rigid steel frames", Steel Compos. Struct., 28(2), 209-221. https://doi.org/10.12989/scs.2018.28.2.479.