References
- Akhavan Alavi, S.M., Mohammadimehr, M. and Ejtahed, S.H. (2021), "Vibration analysis and control of micro porous beam integrated with FG-CNT distributed piezoelectric sensor and actuator", Steel Compos. Struct., 41(4), 595-608. https://doi.org/10.12989/SCS.2021.41.4.595.
- Al-Saedi, D.S.J., Masood, S.H., Faizan-Ur-Rab, M., Alomarah, A. and Ponnusamy, P. (2018), "Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM", Mater. Des., 144, 32-44, https://doi.org/10.1016/j.matdes.2018.01.059.
- Arefi, M., Firouzeh, S., Mohammad-Rezaei Bidgoli, E. and Civalek, O. (2020), "Analysis of porous micro-plates reinforced with FG-GNPs based on Reddy plate theory", Compos. Struct., 247, 12391. https://doi.org/10.1016/j.compstruct.2020.112391.
- Assie, A., Akbas, S.D., Kabeel, A.M., Abdelrahman, A.A. and Eltaher, M.A. (2022), "Dynamic analysis of porous functionally graded layered deep beams with viscoelastic core", Steel Compos. Struct., 43(1), 79-90. https://doi.org/10.12989/SCS.2022.43.1.079
- Bacciocchi, M., Luciano, R., Majorana, C. and Tarantino, A.M. (2019), "Free vibrations of sandwich plates with damaged softcore and non-uniform mechanical properties: Modeling and finite element analysis: Materials, 12, 15, 2444, https://doi.org/10.3390/ma12152444.
- Bessaim, A., Houari, M.S., Tounsi, A., Mahmoud, S. and Bedia, E.A.A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498888.
- Bui, T.Q., Khosravifard, A., Zhang, Ch., Hematiyan, M.R. and Golub, M.V. (2013), "Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method", Eng. Struct., 47, 90-104,. https://doi.org/10.1016/j.engstruct.2012.03.041.
- Chehel Amirani, M., Khalili, S.M.R. and Nemati, N. (2009), "Free vibration analysis of sandwich beam with FG core using the element free Galerkin method", Compos. Struct., 90(3), 373-379. https://doi.org/10.1016/j.compstruct.2009.03.023.
- Chen, D., Kitipornchai, S., and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin-Wall. Struct., 107, 39-48. https://doi.org/10.1016/j.tws.2016.05.025.
- Chen, H., and Li, S. (2022), "Collinear nonlinear mixed-frequency ultrasound with FEM and experimental method for structural health prognosis, Processes, 10(4), 656. https://doi.org/10.3390/pr10040656.
- Daikh, A.A., and Zenkour, A.M. (2019), "Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory", Mater. Res. Express, 6(11), 115707. https://doi.org/10.1088/2053-1591/ab48a9.
- Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane". J. Appl. Mech., 50(6), 609-614. https://doi.org/10.1115/1.3167098
- Demirhan, P.A. and Taskin, V. (2017), "Levy solution for bending analysis of functionally graded sandwich plates based on four variable plate theory", Compos. Struct., 177, 80-95. https://doi.org/ 10.1016/j.compstruct.2017.06.048.
- El Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda Bedia, E.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004.
- Fasana, A. and Marchesiello, S. (2001), Rayweigh-Ritz Analysis sandwich beams", J. Sound Vib., 241(4), 643-652. https://doi.org/10.1006/jsvi.2000.3311.
- Garg, A., Chalak, H.D., Belarbi, M.-O. and Zenkour, A.M. (2022), "A parametric analysis of free vibration and bending behavior of sandwich beam containing an open-cell metal foam core", Archiv. Civil Mech. Eng., 22(1), 56. https://doi.org/10.1007/s43452-021-00368-3.
- Garg, A., Chalak, H.D. and Chakrabarti, A. (2020), "Comparative study on the bending of sandwich FGM beams made up of different material variation laws using refined layerwise theory", Mech. Mater., 151, 103634. https://doi.org/10.1016/j.mechmat.2020.103634.
- Hadji, L., Ait Atmane, H., Tounsi, A., Mechab, I. and Adda Bedia, E.A. (2011), "Free vibration of functionally graded sandwich plates using four-variable refined plate theory", Appl. Math. Mech. -Engl. Ed., 32(7), 925-942. https://doi.org/10.1007/s10483-011-1470-9.
- Hafizpour, H.R. and Simchi, A. (2008), "Investigation on compressibility of Al-SiC composite powders", Powder Metallurgy, 51(3), 217-223. https://doi.org/10.1179/174329007X22250.
- Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/SEM.2019.71.1.089.
- Hao, R.-B., Lu, Z.-Q., Ding, H., and Chen, L.-Q. (2022), "A nonlinear vibration isolator supported on a flexible plate: analysis and experiment", Nonlinear Dyn., 108(2), 941-958. https://doi.org/10.1007/s11071-022-07243-7.
- Hohe, J. and Librescu, L. (2004), "Advances in the structural modeling of elastic sandwich panels", Mech. Adv. Mater. Struct., 11(4-5), 395-424. https://doi.org/10.1080/15376490490451561.
- Hong, C., Du, J., Liang, J., Zhang, X. and Han, J. (2011), "Functionally graded porous ceramics with dense surface layer produced by freeze-casting", Ceramics Int., 37(8), 3717-3722. https://doi.org/10.1016/j.ceramint.2011.04.119.
- Huang, H., Yao, Y., Liang, C. and Ye, Y. (2022), "Experimental study on cyclic performance of steel-hollow core partially encased composite spliced frame beam", Soil Dyn. Earthq. Eng., 163, 107499. https://doi.org/10.1016/j.soildyn.2022.107499.
- Kamrani, S., Riedel, R., Seyed Reihani, S.M. and Kleebe, H.J. (2010), "Effect of reinforcement volume fraction on the mechanical properties of Al-SiC nanocomposites produced by mechanical alloying and consolidation", J. Compos. Mater., 44(3), 313-326. https://doi.org/10.1177/0021998309347570.
- Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi A. (2013), "Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model", Steel Compos. Struct., 15(4), 399-423, https://doi.org/10.12989/scs.2013.15.4.399.
- Khalili, S.M.R., Nemati, N., Malekzadeh, K. and Damanpack, A.R. (2010), "Free vibration analysis of sandwich beams using improved dynamic stiffness method", Compos. Struct., 92(2), 387-394. https://doi.org/10.1016/j.compstruct.2009.08.020.
- Kumar Sah, S. and Ghosh, A. (2022), "Influence of porosity distribution on free vibration and buckling analysis of multidirectional functionally graded sandwich plates", Compos. Struct., 279, 114795, https://doi.org/10.1016/j.compstruct.2021.114795.
- Li, Y., Feng, Z., Hao, L., Huang, L., Xin, C., Wang, Y., Bilotti, E., Essa, K., Zhang, H., Li, Z., Yan, F. and Peijs, T. (2020), "A review on functionally graded materials and structures via additive manufacturing: From multi scale design to versatile functional properties", Adv. Mater. Technol., 5(6), 1900981, https://doi.org/10.1002/admt.201900981.
- Liu, K., Zong, S., Li, Y., Wang, Z., Hu, Z. and Wang, Z. (2022), "Structural response of the U-type corrugated core sandwich panel used in ship structures under the lateral quasi-static compression load", Marine Struct., 84, 103198. https://doi.org/10.1016/j.marstruc.2022.103198.
- Madan, R. and Bhowmick, S. (2020), "A review on application of FGM fabricated using solid-state processes", Adv. Mater. Proce. Technol., 6(3), 608-619. https://doi.org/10.1080/2374068X.2020.1731153.
- Madan, R. and Bhowmick, S. (2022), "Fabrication and microstructural characterization of Al-SiC based functionally graded disk", Aircraft Eng. Aeros. Technol., https://doi.org/10.1108/AEAT-03-2022-0096.
- Madan, R., Bhowmick, S., Hadji, L. and Tounsi, A. (2022), "Limit elastic speed analysis of rotating porous annulus functionally graded disks", Steel Compos. Struct., 42(3), 375-388. https://doi.org/10.12989/scs.2022.42.3.375.
- Madenci, E. and Ozkilic, Y.O. (2021), "Cyclic response of selfcentering SRC walls with frame beams as boundary", Steel Compos. Struct., 40(2), 157-173, https://doi.org/10.12989/SCS.2021.40.2.157.
- Matula, I., Dercz, G. and Barczyk, J. (2020), "Titanium/Zirconium functionally graded materials with porosity gradients for potential biomedical applications", Mater. Sci. Technol., 36(9), 972-977. https://doi.org/10.1080/02670836.2019.1593603.
- Moradi-Dastjerdi, R. and Behdinan, K. (2021), "Free vibration response of smart sandwich plates with porous CNT-reinforced and piezoelectric layers", Appl. Mathem. Modelling, 96. 66-79, https://doi.org/10.1016/j.apm.2021.03.013.
- Ning, J., Sievers, D.E., Garmestani, H. and Liang, S.Y. (2020), "Analytical modeling of part porosity in metal additive manufacturing", Int. J. Mech. Sci., 172, 105428. https://doi.org/10.1016/j.ijmecsci.2020.105428.
- Onvani, D., Jafari, A. and Dehkordi, M.B. (2021), "Carrera unified formulation for bending and free vibration analysis of sandwich plate with FG-CNT faces considering the both soft and stiff cores", Mech. Adv. Mater. Struct., 1-15, https://doi.org/10.1080/15376494.2021.1983899.
- Permoon, M.R. and Farsadi, T. (2021), "Free vibration of threelayer sandwich plate with viscoelastic core modelled with fractional theory", Mech. Res. Commun., 116, 103766. https://doi.org/10.1016/j.mechrescom.2021.103766.
- Pradhan, S.C. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vib., 321(1-2), 342-362. https://doi.org/10.1016/j.jsv.2008.09.018.
- Shi, J. and Teng, X. (2021), "Numerical forced vibration analysis of compositionally gradient porous cylindrical microshells under moving load and thermal environment", Steel Compos. Struct., 40(6), 893-902. https://doi.org/10.12989/SCS.2021.40.6.893.
- Suresh, S. and Mortensen, A. (1997), "Functionally graded metals and metal-ceramic composites: Part 2 Thermomechanical behaviour", Int. Mater. Rev., 42(3), 85-116. https://doi.org/10.1179/imr.1997.42.3.85.
- Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030, https://doi.org/10.1016/j.compstruct.2021.114030.
- Tatsumi, A. and Fujikubo, M. (2020), "Ultimate strength of container ships subjected to combined hogging moment and bottom local loads part 1: Nonlinear finite element analysis", Marine Struct., 69, 102683, https://doi.org/10.1016/j.marstruc.2019.102683.
- Thieme, M., Wieters, K. P., Bergner, F., Scharnweber, D., Worch, H., Ndop, J. and Grill, W. (2001), "Titanium powder sintering for preparation of a porous functionally graded material destined for orthopaedic implants", J. Mater. Sci. Mater. Medicine, 12(3), 225-231. https://doi.org/10.1023/A:1008958914818.
- Tossapanon, P. and Wattanasakulpong, N. (2016), "Stability and free vibration of functionally graded sandwich beams resting on two-parameter elastic foundation", Compos. Struct., 142, 215-225. https://doi.org/10.1016/j.compstruct.2016.01.085.
- Van Vinh, P. and Huy, L.Q. (2022), "Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory", Defence Technol., 18(3), 490-508. https://doi.org/10.1016/j.dt.2021.03.006.
- Verma, R.K., Parganiha, D. and Chopkar, M. (2021), "A review on fabrication and characteristics of functionally graded aluminum matrix composites fabricated by centrifugal casting method", SN Appl. Sci., 3(2), 227. https://doi.org/10.1007/s42452-021-04200-8.
- Vo, T.P., Thai, H.-T., Nguyen, T.-K., Maheri, A. and Lee, J. (2014), "Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory", Eng. Struct., 64, 12-22. https://doi.org/10.1016/j.engstruct.2014.01.029.
- Wang, Y. and Wang, X. (2016), "Free vibration analysis of soft-core sandwich beams by the novel weak form quadrature element method", J. Sandw. Struct. Mater., 18(3), 294-320. https://doi.org/10.1177/1099636215601373.
- Wang, Y.Q. and Zhao, H.L. (2019), "Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method", Archive Appl. Mech., 89(11), 2335-2349. https://doi.org/10.1007/s00419-019-01579-0.
- Yang, Y., Chen, B., Lin, W., Li, Y. and Dong, Y. (2021), "Vibration and symmetric thermal buckling of asymmetric annular sandwich plates with piezoelectric/GPLRC layers rested on foundation", Aeros. Sci. Technol., 110, 106495, https://doi.org/10.1016/j.ast.2021.106495.
- Yang, Y., Lam, C.C., Kou, K.P. and Iu, V.P. (2014), "Free vibration analysis of the functionally graded sandwich beams by a meshfree boundary-domain integral equation method", Compos. Struct., 117, 32-39. https://doi.org/10.1016/j.compstruct.2014.06.016.
- Zenkour, A.M. (2018), "A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities", Compos. Struct., 201, 38-48. https://doi.org/10.1016/j.compstruct.2018.05.147.
- Zhang, Y., Jin, G., Chen, M., Ye, T., Yang, C. and Yin, Y. (2020), "Free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core", Compos. Struct., 244, 112298. https://doi.org/10.1016/j.compstruct.2020.112298.
- Zhang, H., Li, L., Ma, W., Luo, Y., Li, Z. and Kuai, H. (2022a), "Effects of welding residual stresses on fatigue reliability assessment of a PC beam bridge with corrugated steel webs under dynamic vehicle loading", Structures, 45, 1561-1572. https://doi.org/10.1016/j.istruc.2022.09.094.
- Zhang, C., Mousavi, A.A., Masri, S.F., Gholipour, G., Yan, K. and Li, X. (2022b), "Vibration feature extraction using signal processing techniques for structural health monitoring: A review", Mech. Syst. Signal Processing, 177. 109175, https://doi.org/10.1016/j.ymssp.2022.109175.
- Zhang, Z., Yang, F., Zhang, H., Zhang, T., Wang, H., Xu, Y. and Ma, Q. (2021), "Influence of CeO2 addition on forming quality and microstructure of TiC -reinforced CrTi4-based laser cladding composite coating", Mater. Character., 171, 110732. https://doi.org/10.1016/j.matchar.2020.110732.
- Zhang, J., Zhu, Y., Li, K., Yuan, H., Du, J. and Qin, Q. (2022c), "Dynamic response of sandwich plates with GLARE facesheets and honeycomb core under metal foam projectile impact: Experimental and numerical investigations", Int. J. Impact Eng., 164. 104201. https://doi.org/10.1016/j.ijimpeng.2022.104201.