DOI QR코드

DOI QR Code

Behaviour and design of stainless steel shear connectors in composite beams

  • Yifan Zhou (School of Civil Engineering, The University of Sydney) ;
  • Brian Uy (School of Civil Engineering, The University of Sydney) ;
  • Jia Wang (School of Civil Engineering, The University of Sydney) ;
  • Dongxu Li (School of Civil Engineering, The University of Sydney) ;
  • Xinpei Liu (School of Civil Engineering, The University of Sydney)
  • Received : 2021.07.30
  • Accepted : 2023.01.02
  • Published : 2023.01.25

Abstract

Stainless steel-concrete composite beam has become an attractive structural form for offshore bridges and iconic high-rise buildings, owing to the superior corrosion resistance and excellent ductility of stainless steel material. In a composite beam, stainless steel shear connectors play an important role by establishing the interconnection between stainless steel beam and concrete slab. To enable the best use of high strength stainless steel shear connectors in composite beams, high strength concrete is recommended. To date, the application of stainless steel shear connectors in composite beams is still very limited due to the lack of research and proper design recommendations. In this paper, a total of seven pushout specimens were tested to investigate the load-slip behaviour of stainless steel shear connectors. A thorough discussion has been made on the differences between stainless steel bolted connectors and welded studs, in terms of the failure modes, load-slip behaviour and ultimate shear resistance. In parallel with the experimental programme, a finite element model was developed in ABAQUS to simulate the behaviour of stainless steel shear connectors, with which the effects of shear connector strength, concrete strength and embedded connector height to diameter ratio (h/d) were evaluated. The obtained experimental and numerical results were analysed and compared with existing codes of practice, including AS/NZS 2327, EN 1994-1-1 and ANSI/AISC 360-16. The comparison results indicated that the current codes need to be improved for the design of high strength stainless steel shear connectors. On this basis, modified design approaches were proposed to predict the shear capacity of stainless steel bolted connectors and welded studs in the composite beams.

Keywords

Acknowledgement

The financial support from Australian Research Council's Discovery Scheme (Project ID: DP180100418) is gratefully acknowledged. The writers would like to thank Outokumpu and Stirlings Performance Steel for the donations of stainless steel plates. A great thanks to Bumax for the generous donations of stainless steel bolted connectors. The writers extend special thanks to Dr. Mohanad Mursi, Mr. Garry Towell and the technicians from J.W.Roderick Laboratory for their assistance and advice. A special thanks to Dr. Zhichao Huang for his valuable advice on developing this paper.

References

  1. Abaqus (2016), User Manual. Version 6.16, Dassault Systemes Simulia Corporation, Providence, Ri, USA.
  2. AISC 360,(2016), ANSI/AISC 360-16, Specification for Structural Steel Buildings, American Institute of Steel Construction, Illinois, USA, Chicago.
  3. Ataei, A., Zeynalian, M. and Yazdi, Y. (2019), "Cyclic behaviour of bolted shear connectors in steel-concrete composite beams", Eng. Struct., 198, 109455. https://doi.org/10.1016/j.engstruct.2019.109455
  4. Australian standard (2007), AS1391:2007. Metallic Materials-Tensile Testing at Ambient Temperature, Sydney, NSW, Australia.
  5. Australia/New Zealand standard (2017), AS/NZS 2327:2017, Composite Steel-Concrete Construction in Buildings, Sydney, NSW, Australia/Wellington, New Zealand.
  6. Australia/New Zealand standard (2001), AS/NZS 4673:2001, Cold-Formed Stainless Steel Structures, Sydney, NSW, Australia/Wellington, New Zealand.
  7. Bonilla, J., Bezerra, L.M., Mirambell, E. and Massicotte, B. (2018), "Review of stud shear resistance prediction in steel-concrete composite beams", Steel Compos. Struct., 27(3),355-370. https://doi.org/10.12989/scs.2018.27.3.355
  8. Carreira, D.J. and Chu, K.H. (1985), "Stress-strain relationship for plain concrete in compression", J. Am. Concr. Inst., 82(6),797-804.
  9. Chapman, J. (1964), "The behaviour of composite beams in steel and concrete", J. Eng. Struct., 42,115-125.
  10. Dallam, L.N. (1966), "Pushout tests with high strength bolt shear connectors, U. o. M. Columbia, Columbia, MO.
  11. Ding, F., Yin, G., Wang, H., Wang, L. and Guo, Q. (2017), "Behavior of headed shear stud connectors subjected to cyclic loading", Steel Compos. Struct, 25(6), 705-716. https://doi.org/10.12989/scs.2017.25.6.705
  12. Eurocode 4 (2004), EN 1994-1-1. : Design of Composite Steel and Concrete Structures, Part 1-1: General Rules and Rules for Buildings, Standardisation, B. E. C. f., Brussels, Belgium.
  13. Eurocode 3 (2006), EN 1993-1-4. : Design of Steel Structures - Part 1.4: General Rules - Supplementary Rules for Stainless Steel, Standardisation, B. E. C. f., Brussels, Belgium.
  14. Gardner, L. and Nethercot, D. (2004), "Structural stainless steel design: a new approach", Struct. Eng., 82, 21-30.
  15. Gardner, L., Yun, X., Macorini, L. and Kucukler, M. (2017), "Hot-rolled steel and steel-concrete composite design incorporating strain hardening", Struct., 9, 21-28. https://doi.org/10.1016/j.istruc.2016.08.005.
  16. Gluhovic, N., Markovic, Z., Spremic, M. and Pavlovic, M. (2020), "Mechanically fastened shear connectors in prefabricated concrete slabs-experimental analysis", Steel Compos. Struct., 36(4), 369-381. https://doi.org/10.12989/scs.2020.36.4.369.
  17. Hawkins, N. (1987), "Strength in shear and tension of cast-in-place anchor bolts", Anchorage Concr, 103, 233-256.
  18. He, J., Lin, Z., Liu, Y., Xu, X., Xin, H. and Wang, S. (2020), "Shear stiffness of headed studs on structural behaviors of steel-concrete composite girders", Steel Compos. Struct., 36(5),553-568. https://doi.org/10.12989/scs.2020.36.5.553.
  19. Hicks, S. (2007), "Resistance and ductility of shear connection: full-scale beam and push tests", 6th International Conference on Steel & Aluminium Structures.
  20. Huang, Y. and Young, B. (2014), "The art of coupon tests", J. Constr. Steel Res., 96,159-175. https://doi.org/10.1016/j.jcsr.2014.01.010.
  21. Huang, Z., Li, D., Uy, B., Thai, H.T. and Hou, C. (2019), "Local and post-local buckling of fabricated high-strength steel and composite columns", J. Constr. Steel Res., 154, 235-249. https://doi.org/10.1016/j.jcsr.2018.12.004.
  22. Huang, Z., Uy, B., Li, D. and Wang, J. (2020), "Behaviour and design of ultra-high-strength CFST members subjected to compression and bending", J. Constr. Steel Res., 175, 106351. https://doi.org/10.1016/j.jcsr.2020.106351.
  23. Kwon, G., Engelhardt, M.D. and Klingner, R.E. (2010), "Behavior of post-installed shear connectors under static and fatigue loading", J. Constr. Steel Res., 66 (4),532-541. https://doi.org/10.1016/j.jcsr.2009.09.012.
  24. Lam, D. and El-Lobody, E. (2005), "Behavior of headed stud shear connectors in composite beam", J. Constr. Steel Res., 131 (1), 96-107. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(96).
  25. Lam, D. and Gardner, L. (2008), "Structural design of stainless steel concrete filled columns", J. Constr. Steel Res., 64(11), 1275-1282. https://doi.org/10.1016/j.jcsr.2008.04.012.
  26. Lam, D., Yang, J. and Dai, X. (2019), "Finite element analysis of concrete filled lean duplex stainless steel columns", Struct., 21, 150-155. https://doi.org/10.1016/j.istruc.2019.01.024.
  27. Li, D., Uy, B., Wang, J. and Song, Y. (2020), "Behaviour and design of high-strength Grade 12.9 bolts under combined tension and shear", J. Constr. Steel Res., 174, 106305. http://dx.doi.org/10.1016/j.jcsr.2020.106305.
  28. Lima, J.M., Bezerra, L.M., Bonilla, J., Silva, R.S. and Barbosa, W. (2020), "Behavior and resistance of truss-type shear connector for composite steel-concrete beams", Steel Compos. Struct., 36(5), 569-586. http://dx.doi.org/10.12989/scs.2020.36.5.569.
  29. Liu, X., Bradford, M.A. and Lee, M.S. (2015), "Behavior of high-strength friction-grip bolted shear connectors in sustainable composite beams", J. Struct. Eng., 141(6),04014149. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001090
  30. Loh, H., Uy, B. and Bradford, M. A. (2004), "The effects of partial shear connection in the hogging moment regions of composite beams: Part I-Experimental study", J. Constr. Steel Res., 60(6), 897-919. http://dx.doi.org/10.1016/j.jcsr.2003.10.007.
  31. Mirambell, E., Bonilla, J., Bezerra, L.M. and Clero, B. (2021), "Numerical study on the deflections of steel-concrete composite beams with partial interaction", Steel Compos. Struct., 38 (1),67-78. https://doi.org/10.12989/scs.2021.38.1.067.
  32. Mirza, O. and Uy, B. (2009), "Behaviour of headed stud shear connectors for composite steel-concrete beams at elevated temperatures", J. Constr. Steel Res., 65(3), 662-674. https://doi.org/10.1016/j.jcsr.2008.03.008.
  33. Nie, J. and Liang, T. (2008), "Vertical shear strength of composite beams with compact steel sections. Part I: Composite beams subjected to sagging moment", China Civ. Eng. J., 41(3),7-14. https://doi.org/10.3321/j.issn:1000-131X.2008.03.002
  34. Oehlers, D. (1990), "Deterioration in strength of stud connectors in composite bridge beams", J. Struct. Eng., 116(12), 3417-3431. https://doi.org/10.1061/(ASCE)07339445(1990)116:12(3417).
  35. Oehlers, D. and Bradford, M.A. (1995), "Composite steel and concrete structural members: Fundamental behaviour", Kidlington, Oxford.
  36. Pathirana, S.W., Uy, B., Mirza, O. and Zhu, X. (2016), "Bolted and welded connectors for the rehabilitation of composite beams", J. Constr. Steel Res., 125, 61-73. https://doi.org/10.1016/j.jcsr.2016.06.003.
  37. Pavlovic, M., Markovic, Z., Veljkovic, M. and Budevac, D. (2013), "Bolted shear connectors vs. headed studs behaviour in push-out tests", J. Constr. Steel Res., 88, 134-149. https://doi.org/10.1016/j.jcsr.2013.05.003.
  38. Qureshi, J., Lam, D. and Ye, J. (2011), "Effect of shear connector spacing and layout on the shear connector capacity in composite beams", J. Constr. Steel Res., 67(4),706-719. https://doi.org/10.1016/j.jcsr.2010.11.009.
  39. Russell, H.G., Volz, J. and Bruce, R.N. (1995), "Applications and Limitations of High Strength Concrete in Prestressed Bridge Girders", Proceedings, Fourth International Bridge Engineering Conference, Washington DC.
  40. Shamass, R. and Cashell, K. (2019), "Analysis of stainless steel-concrete composite beams", J. Constr. Steel Res., 152, 132-142. https://doi.org/10.1016/j.jcsr.2018.05.032.
  41. Slutter, R.G. and Fisher, J.W. (1967), Fatigue Strength of Shear Connectors, Fritz Eng. Lab., Lehigh University.
  42. Song, Y., Wang, J., Uy, B. and Li, D. (2020a), "Experimental behaviour and fracture prediction of austenitic stainless steel bolts under combined tension and shear", J. Constr. Steel Res., 166, 105916. https://doi.org/10.1016/j.jcsr.2019.105916.
  43. Song, Y., Wang, J., Uy, B. and Li, D. (2020b), "Stainless steel bolts subjected to combined tension and shear: Behaviour and design", J. Constr. Steel Res., 170, 106122. https://doi.org/10.1016/j.jcsr.2020.106122.
  44. Spremic, M., Pavlovic, M., Markovic, Z., Veljkovic, M. and Budjevac, D. (2018), "FE validation of the equivalent diameter calculation model for grouped headed studs", Steel Compos. Struct., 26(3), 375-386. https://doi.org/10.12989/scs.2018.26.3.375.
  45. Su, Q., Yang, G. and Bradford, M.A. (2014), "Static behaviour of multi-row stud shear connectors in high-strength concrete", Steel Compos. Struct., 17(6), 967-980. https://doi.org/10.12989/scs.2014.17.6.967.
  46. Suwaed, A.S. and Karavasilis, T.L. (2018), "Removable shear connector for steel-concrete composite bridges", Steel Compos. Struct, 29(1), 107-123. https://doi.org/10.12989/scs.2018.29.1.107.
  47. Thai, H.T. and Uy, B. (2015), "Finite element modelling of blind bolted composite joints", J. Constr. Steel Res., 112, 339-353. http://dx.doi.org/10.1016/j.jcsr.2015.05.011.
  48. Uy, B., Tao, Z. and Han, L.H. (2011), "Behaviour of short and slender concrete-filled stainless steel tubular columns", J. Constr. Steel Res., 67(3), 360-378. https://doi.org/10.1016/j.jcsr.2010.10.004.
  49. Vasdravellis, G., Uy, B., Tan, E.L. and Kirkland, B. (2015), "Behaviour and design of composite beams subjected to sagging bending and axial compression", J. Constr. Steel Res., 110, 29-39. https://doi.org/10.1016/j.jcsr.2015.03.010.
  50. Wang, J., Uy, B., Li, D. and Song, Y. (2020), "Fatigue behaviour of stainless steel bolts in tension and shear under constant-amplitude loading", Int. J. Fatigue, 133, 105401. https://doi.org/10.1016/j.ijfatigue.2019.105401.
  51. Wang, J., Uy, B., Thai, H.-T. and Li, D. (2018), "Behaviour and design of demountable beam-to-column composite bolted joints with extended end-plates", J. Constr. Steel Res., 144, 221-235. https://doi.org/10.1016/j.jcsr.2018.02.002.
  52. Wang, J., Zhu, H., Uy, B. and Aslani, F. (2016), "Behaviour of demountable steel and composite beam-to-column connections", Proceedings of the 8th International Conference on Steel and Aluminium Structures.
  53. Zhang, Y., Chen, B., Liu, A., Pi, Y.-l., Zhang, J., Wang, Y. and Zhong, L. (2019), "Experimental study on shear behavior of high strength bolt connection in prefabricated steel-concrete composite beam", Compos. B. Eng., 159, 481-489. https://doi.org/10.14006/j.jzjgxb.2019.S1.054.
  54. Zhang, Y., Liu, A., Chen, B., Zhang, J., Pi, Y.-L. and Bradford, M. A. (2020), "Experimental and numerical study of shear connection in composite beams of steel and steel-fibre reinforced concrete", Eng. Struct., 215, 110707. https://doi.org/10.1016/j.engstruct.2020.110707.
  55. Zhou, Y., Uy, B., Liu, X. and Li, D. (2019), "Finite element modelling of stainless steel shear connectors in composite beams", Proceedings of International Association of Structural engineering and mechanics, ASEM19, Jeju Island.
  56. Zhou, Y., Uy, B., Wang, J., Li, D., Huang, Z. and Liu, X. (2021), "Behaviour and design of stainless steel-concrete composite beam.", J. Constr. Steel Res., 185, 106863. https://doi.org/10.1016/j.jcsr.2021.106863.