DOI QR코드

DOI QR Code

A robust approach in prediction of RCFST columns using machine learning algorithm

  • Van-Thanh Pham (Department of Civil and Environmental Engineering, Sejong University) ;
  • Seung-Eock Kim (Department of Civil and Environmental Engineering, Sejong University)
  • Received : 2022.04.05
  • Accepted : 2022.12.12
  • Published : 2023.01.25

Abstract

Rectangular concrete-filled steel tubular (RCFST) column, a type of concrete-filled steel tubular (CFST), is widely used in compression members of structures because of its advantages. This paper proposes a robust machine learning-based framework for predicting the ultimate compressive strength of RCFST columns under both concentric and eccentric loading. The gradient boosting neural network (GBNN), an efficient and up-to-date ML algorithm, is utilized for developing a predictive model in the proposed framework. A total of 890 experimental data of RCFST columns, which is categorized into two datasets of concentric and eccentric compression, is carefully collected to serve as training and testing purposes. The accuracy of the proposed model is demonstrated by comparing its performance with seven state-of-the-art machine learning methods including decision tree (DT), random forest (RF), support vector machines (SVM), deep learning (DL), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and categorical gradient boosting (CatBoost). Four available design codes, including the European (EC4), American concrete institute (ACI), American institute of steel construction (AISC), and Australian/New Zealand (AS/NZS) are refereed in another comparison. The results demonstrate that the proposed GBNN method is a robust and powerful approach to obtain the ultimate strength of RCFST columns.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (No. 2021R1A2B5B01002577).

References

  1. Abbasi, A., Firouzi, B., Sendur, P., Heidari, A.A., Chen, H. and Tiwari, R. (2021), "Multi-strategy Gaussian Harris hawks optimization for fatigue life of tapered roller bearings", Eng. Comput., 38(5), 4387-4413. https://doi.org/10.1007/s00366-021-01442-3.
  2. American Concrete Institute Committee (2014), Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (318R-14). Farmington Hills, MI.
  3. Asteris, P.G., Lemonis, M.E., Le, T.T. and Tsavdaridis, K.D. (2021a), "Evaluation of the ultimate eccentric load of rectangular CFSTs using advanced neural network modeling", Eng. Struct., 248(September), 113297. https://doi.org/10.1016/j.engstruct.2021.113297.
  4. Asteris, P.G., Lemonis, M.E., Nguyen, T.A., Van Le, H. and Pham, B.T. (2021b), "Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes", Steel Compos. Struct., 39(4), 471-491. https://doi.org/10.12989/scs.2021.39.4.471.
  5. Australian/New Zealand Standard (2017), AS/NZS 2327, Composite structures-Composite Steel Concrete Construction in Buildings.
  6. Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M., and Inman, D.J. (2021), "A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications", Mech. Syst. Signal Process., 147, 107077. https://doi.org/10.1016/j.ymssp.2020.107077.
  7. Badirli, S., Liu, X., Xing, Z., Bhowmik, A. and Keerthi, S. (2020), Gradient Boosting Neural Networks: GrowNet, ArXiv. https://doi.org/https://doi.org/10.48550/arXiv.2002.07971.
  8. Bardhan, A., Biswas, R., Kardani, N., Iqbal, M., Samui, P., Singh, M.P. and Asteris, P.G. (2022), "A novel integrated approach of augmented grey wolf optimizer and ANN for estimating axial load carrying-capacity of concrete-filled steel tube columns", Constr. Build. Mater., 337(May), 127454. https://doi.org/10.1016/j.conbuildmat.2022.127454.
  9. Chen, T. and Guestrin, C. (2016), "XGBoost: A scalable tree boosting system", Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. https://doi.org/10.1145/2939672.2939785.
  10. Construction, A.I. of S. (2010), Specification for Structural Steel Buildings (ANSI/AISC 360-16). Chicago-Illinois.
  11. Cortes, C., Gonzalvo, X., Kuznetsov, V., Mohri, M. and Yang, S. (2017), "AdaNet: Adaptive Structural Learning of Artificial Neural Networks, In D. Precup & Y. W. Teh", Proceedings of the 34th International Conference on Machine Learning, 874-883). Retrieved from https://proceedings.mlr.press/v70/cortes17a.html.
  12. Dai, X.H., Lam, D., Jamaluddin, N. and Ye, J. (2014), "Numerical analysis of slender elliptical concrete filled columns under axial compression", Thin-Wall. Struct., 77, 26-35. https://doi.org/10.1016/j.tws.2013.11.015.
  13. Denavit, M. (2021), Steel Cconcrete Composites Column Dtabase. Retrieved from http://mark.denavit.me/Composite-Column-Database
  14. Ding, F.X., Fang, C., Bai, Y. and Gong, Y.Z. (2014), "Mechanical performance of stirrup-confined concrete-filled steel tubular stub columns under axial loading", J. Constr. Steel Res., 98, 146-157. https://doi.org/10.1016/j.jcsr.2014.03.005.
  15. Du, Y., Zhang, Y., Chen, Z., Yan, J.B. and Zheng, Z., (2021), "Axial compressive performance of CFRP confined rectangular CFST columns using high-strength materials with moderate slenderness", Constr. Build. Mater., 299, 123912. https://doi.org/10.1016/j.conbuildmat.2021.123912.
  16. European Committee for Standardization (2004), Eurocode 4: Design of Composite Steel and Concrete Structures - Part 1.1: General Rules and Rules for Buildings. Brussels.
  17. Fan, W., Chen, Y., Li, J., Sun, Y., Feng, J., Hassanin, H. and Sareh, P. (2021), "Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications", Structures, 33(December 2020), 3954-3963. https://doi.org/10.1016/j.istruc.2021.06.110.
  18. Friedman, J. (2001), "Greedy function approximation: A Gradient Boosting Machine, Ann. Stat., 29, 1189-1232. https://doi.org/10.2307/2699986.
  19. Giakoumelis, G. and Lam, D., (2004), Axial capacity of circular concrete-filled tube columns, J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001.
  20. Han, L. H., Li, W. and Bjorhovde, R., (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016.
  21. Hassanein, M.F., Patel, V.I., El Hadidy, A.M., Al Abadi, H. and Elchalakani, M. (2018), "Structural behaviour and design of elliptical high-strength concrete-filled steel tubular short compression members", Eng. Struct., 173(October 2016), 495-511. https://doi.org/10.1016/j.engstruct.2018.07.023.
  22. Hawkins, D.M. (2004), "The problem of overfitting", J. Chem. Inf. Comput. Sci., 44(1), 1-12. https://doi.org/10.1021/ci0342472.
  23. Hecht-Nielsen, R. (1989), "Theory of the backpropagation neural network", Int. 1989 Jt. Conf. Neural Networks, 1, 593-605. https://doi.org/10.1109/IJCNN.1989.118638.
  24. Hua, Y.X., Han, L.H., Wang, Q.L. and Hou, C. (2019), "Behaviour of square CFST beam-columns under combined sustained load and corrosion: Experiments", Thin-Walled Struct., 136(December 2017), 353-366. https://doi.org/10.1016/j.tws.2018.12.037.
  25. Kaveh, A., Talatahari, S. and Khodadadi, N. (2020), "Stochastic paint optimizer: theory and application in civil engineering", In Engineering with Computers. https://doi.org/10.1007/s00366-020-01179-5.
  26. Khambra, G. and Shukla, P. (2021), "Novel machine learning applications on fly ash based concrete: An overview", Mater. Today Proc. https://doi.org/10.1016/j.matpr.2021.07.262.
  27. Khan, M., Uy, B., Tao, Z. and Mashiri, F. (2017), "Behaviour and design of short high-strength steel welded box and concrete-filled tube (CFT) sections", Eng. Struct., 147, 458-472. https://doi.org/10.1016/j.engstruct.2017.06.016.
  28. Le, T.T., Asteris, P.G. and Lemonis, M.E. (2021), "Prediction of axial load capacity of rectangular concrete-filled steel tube columns using machine learning techniques", Eng. Comput., https://doi.org/10.1007/s00366-021-01461-0.
  29. Lee, S., Kim, H., Lieu, Q.X. and Lee, J. (2020), "CNN-based image recognition for topology optimization", Knowledge-Based Syst., 198, 105887. https://doi.org/10.1016/j.knosys.2020.105887.
  30. Lee, S., Vo, T. P., Thai, H. T., Lee, J., and Patel, V., (2021), Strength prediction of concrete-filled steel tubular columns using Categorical Gradient Boosting algorithm, Eng. Struct., 238(November 2020), 112109. https://doi.org/10.1016/j.engstruct.2021.112109.
  31. Lemonis, M.E., Daramara, A.G., Georgiadou, A.G., Siorikis, V.G., Tsavdaridis, K.D. and Asteris, P.G. (2022), "Ultimate axial load of rectangular concrete - filled steel tubes using multiple ANN activation functions", Steel Compos. Struct., 4, 459-475.
  32. Li, Hou, C., Han, L.H. and Shen, L. (2020), Numerical study of concrete-encased CFST under preload followed by sustained service load, Steel Compos. Struct., 35(1), 93-109. https://doi.org/10.12989/scs.2020.35.1.093.
  33. Liao, F.Y., Han, L.H. and Tao, Z. (2014), "Behaviour of composite joints with concrete encased CFST columns under cyclic loading: Experiments", Eng. Struct., 59, 745-764. https://doi.org/10.1016/j.engstruct.2013.11.030.
  34. Liao, J., Asteris, P.G., Cavaleri, L., Mohammed, A.S., Lemonis, M. E., Tsoukalas, M.Z. and Armaghani, D.J. (2021), "Novel fuzzy-based optimization approaches for the prediction of ultimate axial load of circular concrete-filled steel tubes", Buildings, 11(12), 1-27. https://doi.org/10.3390/buildings11120629.
  35. Liew, J.Y.R., Xiong, M. and Xiong, D. (2016), "Design of concrete filled tubular beam-columns with high strength steel and concrete", Structures, 8, 213-226. https://doi.org/10.1016/j.istruc.2016.05.005.
  36. Liu, F., Wang, Y. and Chan, T.M. (2017), "Behaviour of concrete-filled cold-formed elliptical hollow sections with varying aspect ratios", Thin-Wall. Struct., 110(October 2016), 47-61. https://doi.org/10.1016/j.tws.2016.10.013.
  37. Lu, Y., Liu, Z., Li, S. and Hu, J. (2018), "Axial compression behavior of hybrid fiber reinforced concrete filled steel tube stub column", Constr. Build. Mater., 174, 96-107. https://doi.org/10.1016/j.conbuildmat.2018.04.089.
  38. Luat, N.V., Shin, J., Han, S.W., Nguyen, N.V. and Lee, K. (2021), "Ultimate axial capacity prediction of CCFST columns using hybrid intelligence models - A new approach", Steel Compos. Struct., 40(3), 461-479. https://doi.org/10.12989/scs.2021.40.3.461.
  39. Ly, H.B., Pham, B.T., Le, L.M., Le, T.T., Le, V.M. and Asteris, P. G. (2021), "Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models", Neural Comput. Appl., 33(8), 3437-3458. https://doi.org/10.1007/s00521-020-05214-w.
  40. Ma, D.Y., Han, L.H. and Zhao, X.L. (2019), "Seismic performance of the concrete-encased CFST column to RC beam joint: Experiment", J. Constr. Steel Res., 154, 134-148. https://doi.org/10.1016/j.jcsr.2018.11.030.
  41. Mahmoodzadeh, A., Mohammadi, M., Hashim Ibrahim, H., Nariman Abdulhamid, S., Ghafoor Salim, S., Farid Hama Ali, H. and Kamal Majeed, M., (2021), "Artificial intelligence forecasting models of uniaxial compressive strength", Transp. Geotech., 27(December 2020), 100499. https://doi.org/10.1016/j.trgeo.2020.100499.
  42. Morino, S. (1998), "Recent developments in hybrid structures in Japan - Research, design and construction", Eng. Struct., 20(4-6), 336-346. https://doi.org/10.1016/S0141-0296(97)00022-9.
  43. Naranjo-Perez, J., Infantes, M., Fernando Jimenez-Alonso, J. and Saez, A. (2020), "A collaborative machine learning-optimization algorithm to improve the finite element model updating of civil engineering structures", Eng. Struct., 225(September). https://doi.org/10.1016/j.engstruct.2020.111327.
  44. Naser, M.Z. and Alavi, A. (2020), Insights into Performance Fitness and Error Metrics for Machine Learning, ArXiv, abs/2006.0.
  45. Naser, M.Z., Thai, S. and Thai, H.T. (2021), "Evaluating structural response of concrete-filled steel tubular columns through machine learning", J. Build. Eng., 34, 101888. https://doi.org/10.1016/j.jobe.2020.101888.
  46. Nguyen, M.S.T., Thai, D.K. and Kim, S.E. (2020), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel Compos. Struct., 35(3), 415-437. https://doi.org/10.12989/SCS.2020.35.3.415.
  47. Pan, Y. and Zhang, L. (2021), "Roles of artificial intelligence in construction engineering and management: A critical review and future trends", Autom. Constr., 122(October 2020), 103517. https://doi.org/10.1016/j.autcon.2020.103517.
  48. Rajasekaran, S., Suresh, D. and Vijayalakshmi Pai, G.A. (2002), "Application of sequential learning neural networks to civil engineering modeling problems", Eng. Comput., 18(2), 138-147. https://doi.org/10.1007/s003660200012.
  49. Reich, Y. (1997), "Machine learning techniques for civil engineering problems", Comput. Civ Infrastruct. Eng, 12(4), 295-310. https://doi.org/10.1111/0885-9507.00065
  50. Reiner, J., Vaziri, R. and Zobeiry, N. (2021), "Machine learning assisted characterisation and simulation of compressive damage in composite laminates", Compos. Struct., 273(June), 114290. https://doi.org/10.1016/j.compstruct.2021.114290.
  51. Ren, Q.X., Zhou, K., Hou, C., Tao, Z. and Han, L.H. (2018), "Dune sand concrete-filled steel tubular (CFST) stub columns under axial compression: Experiments", Thin-Wall. Struct., 124(December 2017), 291-302. https://doi.org/10.1016/j.tws.2017.12.006.
  52. Romero, M.L., Ibanez, C., Espinos, A., Portoles, J.M. and Hospitaler, A. (2017), "Influence of ultra-high strength concrete on circular concrete-filled dual steel columns", Structures, 9, 13-20. https://doi.org/10.1016/j.istruc.2016.07.001.
  53. Sabetifar, H., Nematzadeh, M. and Gholampour, A. (2022), "Modeling of heated concrete-filled steel tubes with steel fiber and tire rubber under axial compression", Comput. Concr., 29(1), 15-29. https://doi.org/10.12989/CAC.2022.29.1.015
  54. Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng., 130(2), 180-188. https://doi.org/10.1061/(asce)0733-9445(2004)130:2(180).
  55. Shanmugam, N.E. and Lakshmi, B. (2001), "State of the art report on steel-concrete composite columns", J. Constr. Steel Res., 57(10), 1041-1080. https://doi.org/10.1016/S0143-974X(01)00021-9.
  56. Son, H., Pham, V.-T., Jang, Y. and Kim, S.-E. (2021), "Damage localization and severity assessment of a cable-stayed bridge using a message passing neural network", Sensors, 21(9). https://doi.org/10.3390/s21093118.
  57. Tao, Z., Uy, B., Han, L.H., and He, S.H. (2008), "Design of concrete-filled steel tubular members according to the Australian Standard AS 5100 model and calibration", Aust. J. Struct. Eng., 8(3), 197-214. https://doi.org/10.1080/13287982.2008.11464998.
  58. Thai, H.T., Uy, B., Khan, M., Tao, Z. and Mashiri, F. (2014), "Numerical modelling of concrete-filled steel box columns incorporating high strength materials", J. Constr. Steel Res., 102, 256-265. https://doi.org/10.1016/j.jcsr.2014.07.014.
  59. Thai, S., Thai, H.T., Uy, B. and Ngo, T. (2019), "Concrete-filled steel tubular columns: Test database, design and calibration", J. Constr. Steel Res., 157, 161-181. https://doi.org/10.1016/j.jcsr.2019.02.024.
  60. Tran, V.L., Jang, Y. and Kim, S.E. (2021), "Improving the axial compression capacity prediction of elliptical CFST columns using a hybrid ANN-IP model", Steel Compos. Struct., 39(3), 319-335. https://doi.org/10.12989/scs.2021.39.3.319.
  61. Tran, V.L., Thai, D.K. and Kim, S.E. (2019), "Application of ANN in predicting ACC of SCFST column", Compos. Struct., 228(August), 111332. https://doi.org/10.1016/j.compstruct.2019.111332.
  62. Tran, V.L., Thai, D.K. and Nguyen, D. D., (2020), Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete, Thin-Walled Struct., 151(March), 106720. https://doi.org/10.1016/j.tws.2020.106720.
  63. Vu, Q.V., Truong, V.H. and Thai, H.T. (2021), "Machine learning-based prediction of CFST columns using gradient tree boosting algorithm", Compos. Struct., 259(July 2020), 113505. https://doi.org/10.1016/j.compstruct.2020.113505.
  64. Wang, Z.B., Tao, Z., Han, L.H., Uy, B., Lam, D. and Kang, W.H. (2017), "Strength, stiffness and ductility of concrete-filled steel columns under axial compression", Eng. Struct., 135, 209-221. https://doi.org/10.1016/j.engstruct.2016.12.049.
  65. Xiong, M. X., Xiong, D. X., and Liew, J. Y. R., (2017a), Axial performance of short concrete filled steel tubes with high- and ultra-high- strength materials, Eng. Struct., 136, 494-510. https://doi.org/10.1016/j.engstruct.2017.01.037.
  66. Xiong, M.X., Xiong, D.X. and Liew, J.Y.R. (2017b), "Behaviour of steel tubular members infilled with ultra high strength concrete", J. Constr. Steel Res., 138, 168-183. https://doi.org/10.1016/j.jcsr.2017.07.001.
  67. Xu, L., Pan, J., and Yang, X., (2021), Mechanical performance of self-stressing CFST columns under uniaxial compression, J. Build. Eng., 44(December 2020), 103366. https://doi.org/10.1016/j.jobe.2021.103366.
  68. Yang, Y., Chen, X., Xue, Y., Yu, Y. and Zhang, C. (2021), "Shear behavior of concrete-encased square concrete-filled steel tube members: Experiments and strength prediction", Steel Compos. Struct., 38(4), 431-445. https://doi.org/10.12989/scs.2021.38.4.431.
  69. Yang, Y.F. and Fu, F. (2019), "Fire resistance of steel beam to square CFST column composite joints using RC slabs: Experiments and numerical studies", Fire Saf. J., 104(August 2018), 90-108. https://doi.org/10.1016/j.firesaf.2019.01.009.
  70. Yaswanth, K.K., Revathy, J. and Gajalakshmi, P. (2021), "Artificial intelligence for the compressive strength prediction of novel ductile geopolymer composites", Comput. Concr., 28(1), 55-68. https://doi.org/10.12989/cac.2021.28.1.055.
  71. Ye, Y., Han, L.H., Sheehan, T. and Guo, Z.X. (2016), "Concrete-filled bimetallic tubes under axial compression: Experimental investigation", Thin-Wall. Struct., 108, 321-332. https://doi.org/10.1016/j.tws.2016.09.004.
  72. Zarringol, M., Thai, H.T., Thai, S. and Patel, V. (2020), "Application of ANN to the design of CFST columns", Structures, 28(October), 2203-2220. https://doi.org/10.1016/j.istruc.2020.10.048.
  73. Zarringol, M., Thai, H.T. and Naser, M.Z. (2021), "Application of machine learning models for designing CFCFST columns", J. Constr. Steel Res., 185(June), 106856. https://doi.org/10.1016/j.jcsr.2021.106856.