DOI QR코드

DOI QR Code

Modal parameter identification of civil structures using symplectic geometry mode decomposition

  • Feng Hu (College of Civil Engineering, Hefei University of Technology) ;
  • Lunhai Zhi (College of Civil Engineering, Hefei University of Technology) ;
  • Zhixiang Hu (College of Civil Engineering, Hefei University of Technology) ;
  • Bo Chen (Key Laboratory of Roadway Bridge and Structural Engineering, Wuhan University of Technology)
  • Received : 2022.04.09
  • Accepted : 2022.12.06
  • Published : 2023.01.26

Abstract

In this article, a novel structural modal parameters identification methodology is developed to determine the natural frequencies and damping ratios of civil structures based on the symplectic geometry mode decomposition (SGMD) approach. The SGMD approach is a new decomposition algorithm that can decompose the complex response signals with better decomposition performance and robustness. The novel method firstly decomposes the measured structural vibration response signals into individual mode components using the SGMD approach. The natural excitation technique (NExT) method is then used to obtain the free vibration response of each individual mode component. Finally, modal natural frequencies and damping ratios are identified using the direct interpolating (DI) method and a curve fitting function. The effectiveness of the proposed method is demonstrated based on numerical simulation and field measurement. The structural modal parameters are identified utilizing the simulated non-stationary responses of a frame structure and the field measured non-stationary responses of a supertall building during a typhoon. The results demonstrate that the developed method can identify the natural frequencies and damping ratios of civil structures efficiently and accurately.

Keywords

Acknowledgement

The financial support is gratefully acknowledged. The work described in this paper was fully supported by a grant from the National Natural Science Foundation of China (51978230, 52278495) and the Natural Science Foundation of Anhui Province (2108085J29). The financial support is gratefully acknowledged.

References

  1. Amezquita-Sanchez, J.P. and Adeli, H. (2015), "A new music-empirical wavelet transform methodology for time-frequency analysis of noisy nonlinear and non-stationary signals", Digital Signal Processing, 45(C), 55-68. https://doi.org/10.1016/j.dsp.2015.06.013.
  2. Amezquita-Sanchez, J.P., Park, H.S. and Adeli, H. (2017), "A novel methodology for modal parameters identification of large smart structures using MUSIC, empirical wavelet transform, and Hilbert transform", Eng. Struct., 147(15), 148-159. https://doi.org/10.1016/j.engstruct.2017.05.054.
  3. Bendat, J.S. and Piersol, A.G. (2010), Random data: Analysis and Measurement Procedures, John Wiley & Sons, New York, USA.
  4. Bonizzi, P., Karel, J.M.H., Meste, O. and Peeters, R.L.M. (2015), "Singular spectrum decomposition: a new method for time series decomposition", Adv. Adaptive Data Anal., 6(04), 107-109. https://doi.org/10.1142/S1793536914500113.
  5. Brincker, R., Ventura, C. and Andersen, P. (2000), "Damping estimation by frequency domain decomposition", Proceedings of the 19th International Modal Analysis Conference (IMAC), San Antonio, Texas, 698-703.
  6. Donoho, D.L. and Johnstone, I.M. (1994), "Ideal spatial adaptation via wavelet shrinkage", Biometrica, 81, 425-455. https://doi.org/10.2307/2337118.
  7. Farrar, C.R. and James III, G.H. (1997), "System identification from ambient vibration measurements on a bridge", J. Sound Vib., 205(1), 1-18. https://doi.org/10.1006/jsvi.1997.0977.
  8. Floch, Y.L. and Pelayo, A . (2018), "Symplectic Geometry and spectral properties of classical and quantum coupled angular momenta", Nonlinear Sci., 29, 655-708. https://doi.org/0.1007/s00332-018-9501-y. 1007/s00332-018-9501-y
  9. Gilles, J. (2013), "Empirical wavelet transform", IEEE Transactions on Signal Processing, 61(16), 3999-4010. https://doi.org/10.1109/TSP.2013.2265222.
  10. Han, J., Zheng, P. and Wang, H. (2014), "Structural modal parameter identification and damage diagnosis based on Hilbert-Huang transform", Earthq. Eng. Eng. Vib., 13(1), 101-111. https://doi.org/10.1007/s11803-014-0215-3.
  11. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H. (1998), "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis", Proceedings of the Royal Society of London, Series a: Mathematical, Physical and Engineering Sciences, 454, 903-995. https://doi.org/10.1098/rspa.1998.0193.
  12. Ibrahim, S.R. (1977), "Random decrement technique for modal identification of structures", J. Spacecraft Rockets, 14(11), 696-700. https://doi.org/10.2514/3.57251.
  13. Kang, K. (1986), "Difference schemes for Hamiltonian formalism and symplectic geometry", Comput. Math, 4, 279-289. https://doi.org/10.2514/3.57251.
  14. Li, Q.S., He, Y.H., Zhou, K., Han, X.L., He, Y.C. and Shu, Z.R. (2018), "Structural health monitoring for a 600 m high skyscraper", Struct. Des. Tall Special Build, 27(12), e1490. https://doi.org/10 .1002/tal.1490. https://doi.org/10.1002/tal.1490
  15. Li, Q.S., Zhi, L.H., Tuan, A.Y., Kao, S.H., Su, S.C. and Wu, C.F. (2011), "Dynamic behavior of Taipei 101 Tower: field measurement and numerical analysis", J. Struct. Eng., ASCE, 137(1), 143-155. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000264.
  16. Li, Q.S., Zhi, L.H., Yi, J., To, A. and Xie, J.M. (2014), "Monitoring of typhoon effects on a super-tall building in Hong Kong", Struct. Control Health Monit., 21(6), 926-949. https://doi.org/10.1002/stc.1622.
  17. Niu, Y.B., Ye, Y., Zhao, W.J., Duan, Y.F. and Shu, J.P. (2021), "Identifying modal parameters of a multispan bridge based on high-rate GNSS-RTK measurement using the CEEMD-RDT approach", J. Bridge Eng., 26(8), 04021049. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001754.
  18. Nuttall, A.H. and Bedrosian, E. (1996), "On the quadrature approximation to the Hilbert transform of modulated signals", Proceedings of the IEEE, 54(10), 1458-1459. https://doi.org/10.1109/PROC.1966.5138.
  19. Pan, H., Yang, Y., Li, X., Zheng, J. and Cheng, J. (2019), "Symplectic geometry mode decomposition and its application to rotating machinery compound fault diagnosis", Mech. Syst. Signal Processing, 114(JAN.1), 189-211. https://doi.org/10.1016/j.ymssp.2018.05.019.
  20. Soyoz, S. and Feng, M.Q. (2009), "Long-term monitoring and identification of bridge structural parameters", Comput. Aided Civil Infrastruct. Eng., 24(2), 82-92. https://doi.org/10.1111/j.1467-8667.2008.00572.x.
  21. Su, W.C., Huang, C.S., Chen, C.H., Liu, C.Y., Huang, H.C. and Le, Q.T. (2014), "Identifying the modal parameters of a structure from ambient vibration data via the stationary wavelet packet", Comput. Aided Civil Infrastruct. Eng., 29(10), 738-757. https://doi.org/10.1111/mice.12115.
  22. Torbol, M. (2014), "Real-time frequency-domain decomposition for structural health monitoring using general-purpose graphic processing unit", Comput. Aided Civil Infrastruct. Eng., 29(9), 689-702. https://doi.org/10.1111/mice.12097.
  23. Van Overschee, P. and B. De Moor. (1993), "Subspace algorithms for the stochastic identification problem", Automatica, 29(3), 649-660. https://doi.org/10.1016/0005-1098(93)90061-W.
  24. Vander Auweraer, H., Guillaume, P., Verboven, P. and Vanlanduit, S. (2001), "Application of a fast-stabilizing frequency domain parameter estimation method", J. Dyn. Syst. Measure. Control, 123(4), 651-658. https://doi.org/10.1115/1.1410369.
  25. Wang, J.L. and Li, Z.J. (2013), "Extreme-point symmetric mode decomposition method for data analysis", Adv. Adaptive Data Anal., 5(3), 1137-1137. https://doi.org/10.1142/s1793536913500155.
  26. Yang, J.N., Lei, Y., Pan, S.W. and Huang, N. (2003a), "System identification of linear structures based on Hilbert-Huang spectral analysis, Part 1: normal models", Earthq. Eng. Struct. Dyn., 32(9), 1443-1467. https://doi.org/10.1002/eqe.287.
  27. Yang, J.N., Lei, Y., Pan, S.W. and Huang, N. (2003b), "System identification of linear structures based on Hilbert-Huang spectral analysis, Part 2: complex models", Earthq. Eng. Struct. Dyn., 32(10), 1533-1554. https://doi.org/10.1002/eqe.288.
  28. Yeh, J.R., Shieh, J.R. and Huang, N.E. (2010), "Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method", Adv. Adaptive Data Anal., 02(02), 135-136. https://doi.org/10.1142/S1793536910000422.
  29. Zhao, B.B., Li, Q.L., Lv, Q. and Si, X.M. (2021), "A spectrum adaptive segmentation empirical wavelet transform for noisy and nonstationary signal processing", IEEE ACCESS, 9, 106375-106386. https://doi.org/10.1109/ACCESS.2021.3099500.
  30. Zheng, Z. and Xin, G. (2019), "Fault feature extraction of hydraulic pumps based on symplectic geometry mode decomposition and power spectral entropy", Entropy, 21(5), 476. https://doi.org/10.3390/e21050476.
  31. Zhi, L.H., Li, Q.S., Wu, J.R. and Li, Z.N. (2011), "Field monitoring of wind effects on a super-tall building during typhoons", Wind Struct., 14(3), 1-31. https://doi.org/10.12989/was.2011.14.3.253.
  32. Zhou, K., Li, Q.S. and Li, X. (2019), "Eliminating beating effects in damping estimation of high-rise buildings", J. Eng. Mech., 145(12), 04019102. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001681.
  33. Zhou, K., Li, Q.S. and Li, X. (2020), "Dynamic behavior of supertall building with active control system during Super Typhoon Mangkhut", J. Struct. Eng, 146(5), 04020077. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002626.