DOI QR코드

DOI QR Code

Combined influence of porosity and elastic foundation parameters on the bending behavior of advanced sandwich structures

  • Malek Hadji (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Abdelhakim Bouhadra (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Belgacem Mamen (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Abderahmane Menasria (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Abdelmoumen Anis Bousahla (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals) ;
  • Fouad Bourada (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Mohamed Bourada (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Kouider Halim Benrahou (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Abdelouahed Tounsi (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology)
  • 투고 : 2021.05.09
  • 심사 : 2022.12.06
  • 발행 : 2023.01.10

초록

Elastic bending of imperfect functionally graded sandwich plates (FGSPs) laying on the Winkler-Pasternak foundation and subjected to sinusoidal loads is analyzed. The analyses have been established using the quasi-3D sinusoidal shear deformation model. In this theory, the number of unknowns is condensed to only five unknowns using integral-undefined terms without requiring any correction shear factor. Moreover, the current constituent material properties of the middle layer is considered homogeneous and isotropic. But those of the top and bottom face sheets of the graded porous sandwich plate (FGSP) are supposed to vary regularly and continuously in the direction of thickness according to the trigonometric volume fraction's model. The corresponding equilibrium equations of FGSPs with simply supported edges are derived via the static version of the Hamilton's principle. The differential equations of the system are resolved via Navier's method for various schemes of FGSPs. The current study examine the impact of the material index, porosity, side-to-thickness ratio, aspect ratio, and the Winkler-Pasternak foundation on the displacements, axial and shear stresses of the sandwich structure.

키워드

참고문헌

  1. Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng, Mech., 54(1), 69-85. https://doi.org/10.12989/sem.2015.54.1.069.
  2. Aicha, K., Rabia, B., Daouadji, T.H. and Bouzidene, A. (2020), "Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions", Coupled systems mechanics, 9(6), 575-597. http://dx.doi.org/10.12989/csm.2020.9.6.575.
  3. Al-Osta, M.A. (2022), "An exponential-trigonometric quasi-3D HSDT for wave propagation in an exponentially graded plate with microstructural defects", Compos. Struct., 297, 115984. https://doi.org/10.1016/j.compstruct.2022.115984.
  4. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/SCS.2019.30.6.603.
  5. Bessaim, A., Houari, M.S., Tounsi, A., Mahmoud, S.R. NS Bedia, E.A.A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498.
  6. Burlayenko, V.N. and Sadowski, T. (2020), "Free vibrations and static analysis of functionally graded sandwich plates with three-dimensional finite elements", Meccanica, 55, 815-832. https://doi.org/10.1007/s11012-019-01001-7.
  7. Chen, X., Shen, H.S. and Huang, X.H. (2022), "Thermomechanical postbuckling analysis of sandwich plates with functionally graded auxetic GRMMC core on elastic foundations", Compos. Struct., 279, 114796. https://doi.org/10.1016/j.compstruct.2021.114796.
  8. Dorduncu, M. (2020), "Stress analysis of sandwich plates with functionally graded cores using peridynamic differential operator and refined zigzag theory", Thin-Wall. Struct., 146, 106468. https://doi.org/10.1016/j.tws.2019.106468.
  9. Funari, M.F., Greco, F. and Lonetti, P. (2018), "Sandwich panels under interfacial debonding mechanisms", Compos Struct, 203, 310-320, https://doi.org/10.1016/j.compstruct.2018.06.113.
  10. Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177/1099636217698443.
  11. Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
  12. Neves, A.M.A., Ferreira, A.J., Carrera, E., Cinefra, M., Jorge, R. M.N. and Soares, C.M.M. (2012), "Static analysis of functionally graded sandwich plates according to a hyperbolic theory considering Zig-Zag and warping effects", Adv. Eng. Softw., 52, 30-43. https://doi.org/10.1016/j.advengsoft.2012.05.005.
  13. Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.000.
  14. Pham, Q.H., Tran, T.T., Tran, V.K., Nguyen, P.C. and NguyenThoi, T. (2022), "Free vibration of functionally graded porous non-uniform thickness annular-nanoplates resting on elastic foundation using ES-MITC3 element", Alexandria Eng. J., 61(3), 1788-1802. https://doi.org/10.1016/j.aej.2021.06.082.
  15. Pham, Q.H., Tran, V.K., Tran, T.T., Nguyen-Thoi, T. and Nguyen, P.C. (2021), "A nonlocal quasi-3D theory for thermal free vibration analysis of functionally graded material nanoplates resting on elastic foundation", Case Studies Thermal Eng., 26, 101170. https://doi.org/10.1016/j.csite.2021.101170.
  16. Rabia, B., Daouadji, T.H. and Abderezak, R. (2019), "Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate", Struct. Eng. Mech., 72(3), 293-304. https://doi.org/10.12989/sem.2019.72.3.293.
  17. Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
  18. Singh, S.A., & Harsha, S. P. (2020), "Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov's method: A semi-analytical approach", Thin-Walled Structures, 150, 106668. https://doi.org/10.1016/j.tws.2020.106668.
  19. Sobhy, M., & Alakel Abazid, M. (2022), "Mechanical and thermal buckling of FG-GPLs sandwich plates with negative Poisson's ratio honeycomb core on an elastic substrate", Europ. Phys. J. Plus, 137(1), 1-21. https://doi.org/10.1140/epjp/s13360-021-02303-0.
  20. Stein, M. (1986), "Nonlinear theory for plates and shells including the effects of transverse shearing", AIAA J., 24(9), 1537-1544. https://doi.org/10.2514/3.9477.
  21. Swaminathan, K., Hirannaiah, S. and Rajanna, T. (2022), "Influence of porosity and nonuniform in-plane edge loads on vibration and buckling response of power law and sigmoid function based FG sandwich plates with geometrical discontinuities", Mech. Based Des. Struct. Machines, 1-33. https://doi.org/10.1080/15397734.2022.2107010.
  22. Thanh, C.L., Nguyen, T.N., Vu, T.H. Samir Khatir, S. and Abdel Wahab, M. (2022), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 38(Suppl 1), 449-460. https://doi.org/10.1007/s00366-020-01154-0.
  23. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
  24. Van Vinh, P. (2021), "Static bending analysis of functionally graded sandwich beams using a novel mixed beam element based on first-order shear deformation theory", Forces Mech., 4, 100039. https://doi.org/10.1016/j.finmec.2021.100039.
  25. Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2021), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.
  26. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156., https://doi.org/10.12989/sem.2016.57.6.1143.
  27. Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
  28. Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A., (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.
  29. Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., Oner, E. and Birinci, A., (2021), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., https://doi.org/10.1016/j.mechmat.2020.103730.
  30. Ye, R., Zhao, N., Yang, D., Cui, J., Gaidai, O. and Ren, P. (2021), "Bending and free vibration analysis of sandwich plates with functionally graded soft core, using the new refined higherorder analysis model", J. Sandw. Struct. Mater., 23(2), 680-710. https://doi.org/10.1177/1099636220909763.
  31. Zenkour, A.M. (2013), "Bending analysis of functionally graded sandwich plates using a simple four-unknown shear and normal deformations theory", J. Sandw. Struct. Mater., 15(6), 629-656. https://doi.org/10.1177/1099636213498886.