Acknowledgement
This study was funded by the Scientific Research Fund of National Natural Science Foundation of China (Grant Number: 51978220, 52078176), National Key Research and Development Program Project (Grant Number: 2019YFE0112400). All the opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect those of the Foundations.
References
- American Institute of Steel Construction/Structural Engineers Association of Northern (2001), "AISC/SEAOC Recommended Provisions for Buckling-Restrained Braced Frames", Seismology and Structural Standards Committee, California, USA.
- Beiraghi, H. (2019), "Seismic response of dual structures comprised by Buckling-Restrained Braces (BRB) and RC walls", Struct. Eng. Mech., 72(4), 443-454. http://doi.org/10.12989/sem.2019.72.4.443.
- Gholipour, M. and Mazloom, M. (2018), "Seismic response analysis of mega-scale buckling-restrained bracing systems in tall buildings", Adv. Comput. Design, 3(1), 17-34. http://doi.org/10.12989/acd.2018.3.1.017.
- Hadianfard, M.A., Eskandari, F. and JavidSharifi, B. (2018), "The effects of beam-column connections on behavior of buckling-restrained braced frames", Steel Compos. Struct., 28(3), 309-318. https://doi.org/10.12989/scs.2018.28.3.309.
- Hikino, T., Okazaki, T., Kajiwara, K. and Nakashima, M. (2013), "Out-of-plane stability of buckling-restrained braces placed in chevron arrangement", J. Struct. Eng., 139(11), 1812-1822. http://doi.org/10.1061/(ASCE)ST.1943-541X.0000767.
- Iwata, M., Kato, T. and Wada, A. (2000), "Buckling-restrained braces as hysteretic dampers", Behavior Steel Struct. Seismic Areas, 33-38. http://doi.org/10.1201/9781003211198-6.
- Iwata, M., Kato, T. and Wada, A. (2018), "Performance evaluation of buckling-restrained braces in damage-controlled structures", In Stessa 2003, 37-43. Routledge.
- Jia, M., Yu, X., Lu, D. and Lu, B. (2017), "Experimental research of assembled buckling-restrained braces wrapped with carbon or basalt fiber", J. Construct. Steel Res., 131, 144-161. http://doi.org/10.1016/j.jcsr.2017.01.004.
- Jia, M., He, J. and Lu, D. (2022), " Experimental research of seismic performance of buckling-restrained braced frame with ductile connections", Structures, 41, 908-924. https://doi.org/10.1016/j.istruc.2022.05.004.
- Li, B., Wang, J., Baniotopoulos, C.C., Yang, J. and Hu, Y. (2020), "Seismic design and pseudo-dynamic tests of blind-bolted CFT frames with buckling-restrained braces", J. Construct. Steel Res., 167, 105857. http://doi.org/10.1016/j.jcsr.2019.105857.
- Liu, R., Raj, R. and Dev, N. (2019), "Analysis on damage of RC frames retrofitted with buckling-restrained braces based on estimation of damage index", Struct. Eng. Mech., 70(6), 781-791. http://doi.org/10.12989/sem.2019.70.6.781.
- Liu, Y., Li, H.N., Li, C. and Dong, T.Z. (2021), "Lifetime seismic performance assessment of high-rise steel-concrete composite frame with buckling-restrained braces under wind-induced fatigue", Struct. Eng. Mech., 77(2), 197-215. http://doi.org/10.12989/sem.2021.77.2.197.
- Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H. (2020), "Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading", Steel Compos. Struct., 36, 163-177. http://doi.org/10.12989/scs.2020.36.2.163.
- Pandikkadavath, M.S. and Sahoo, D.R. (2015), "Ductility demand on reduced-length buckling restrained braces in braced frames", Adv. Struct. Eng. Mater., 3, 2373-2384. https://doi.org/10.1007/978-81-322-2187-6_180.
- Pandikkadavath, M.S. and Sahoo, D.R. (2017), "Mitigation of seismic drift response of braced frames using short yielding-core BRBs", Steel Compos. Struct., 23(3), 285-302. http://doi.org/10.12989/scs.2017.23.3.285.
- Prinz, G.S. (2007), Effect of Beam Splicing on Seismic Response of Buckling-Restrained Braced Frames, Brigham Young University.
- Prinz, G.S., Coy, B. and Richards, P.W. (2014), "Experimental and numerical investigation of ductile top-flange beam splices for improved buckling-restrained braced frame behavior", J. Struct. Eng., 140(9), 04014052. http://doi.org/10.1061/(ASCE)ST.1943-541X.0000930.
- Stratan, A., Zub, C.I. and Dubina, D. (2020), "Prequalification of a set of buckling restrained braces: Part I-experimental tests", Steel Compos. Struct., 34(4), 547-559. http://doi.org/10.12989/scs.2020.34.4.547.
- Tsai, K.C., Hsiao, B.C., Lai, J.W., Chen, C.H., Lin, M.L. and Weng, Y.T. (2003), "Pseudo dynamic experimental response of a full scale CFT/BRB composite frame", Proc., Joint NCREE/JRC Workshop on Int. Collaboration on Earthquake Disaster Mitigation Research.
- Tsai, K.C. and Hsiao, P.C. (2008), "Pseudo-dynamic test of a full-scale CFT/BRB frame-Part II: Seismic performance of buckling-restrained braces and connections", Earthq. Eng. Struct. Dyn., 37(7), 1099-1115. http://doi.org/10.1002/eqe.803.
- Veismoradi, S. and Darvishan, E. (2018), "Probabilistic seismic assessment of mega buckling-restrained braced frames under near-fault ground motions", Earthq. Struct, 15(5), 487-498. http://doi.org/10.12989/eas.2018.15.5.487.
- Walters, M.T., Maxwell, B.H. and Berkowitz, R.A. (2004), "Design for improved performance of buckling-restrained braced frames", SEAOC Annual Convention Proceedings.
- Wongpakdee, N., Leelataviwat, S., Goel, S.C. and Liao, W.C. (2014), "Performance-based design and collapse evaluation of buckling restrained knee braced truss moment frames", Eng. Struct., 60, 23-31. http://doi.org/10.1016/j.engstruct.2013.12.014.
- Zhang, G., Chen, P., Zhao, Z. and Wu, J. (2018), "Experimental study on seismic performance of rocking buckling-restrained brace steel frame with liftable column base", J. Construct. Steel Res., 143, 291-306. http://doi.org/10.1016/j.jcsr.2018.01.002.
- Zhao, J., Chen, R., Wang, Z. and Pan, Y. (2018), "Sliding corner gusset connections for improved buckling-restrained braced steel frame seismic performance: Subassemblage tests", Eng. Struct., 172, 644-662. http://doi.org/10.1016/j.engstruct.2018.06.031.