DOI QR코드

DOI QR Code

A re-examination of the current design rule for staggered bolted connections

  • Xue-Mei Lin (Department of Building and Real Estate, The Hong Kong Polytechnic University) ;
  • Michael C.H. Yam (Department of Building and Real Estate, The Hong Kong Polytechnic University) ;
  • Ke Ke (School of Civil Engineering, Chongqing University) ;
  • Binhui,Jiang (School of Civil Engineering, Central South University) ;
  • Qun He (Department of Building and Real Estate, The Hong Kong Polytechnic University)
  • 투고 : 2022.03.14
  • 심사 : 2023.01.12
  • 발행 : 2023.02.10

초록

This paper summarised and re-examined the theoretical basis of the commonly used design rule developed by Cochrane in the 1920s to consider staggered bolt holes in tension members, i.e., the s2/4g rule. The rule was derived assuming that the term two times the bolt hole diameter (2d0) in Cochrane's original equation could be neglected, and assuming a value of 0.5 for the fractional deduction of a staggered hole in assessing the net section area. Although the s2/4g rule generally provides good predictions of the staggered net section area, the above-mentioned assumptions used in developing the rule are doubtful, in particular for a connection with a small gauge-to-bolt-hole diameter (g/d0) ratio. It was found that the omission of 2d0 in Cochrane's original equation appreciably overestimates the net section area of a staggered bolted connection with a small g/d0 ratio. However, the assumed value of 0.5 for the fractional deduction of a staggered hole underestimates the staggered net section area for small g/d0 ratios. To improve the applicability of the above two assumptions, a modified design equation, which covers a full range of g/d0 ratio, was proposed to accurately predict the staggered net section area and was validated by the existing test data from the literature and numerical data derived from this study. Finally, a reliability analysis of the test and numerical data was conducted, and the results showed that the reliability of the modified design equation for evaluating the net section resistance of staggered bolted connections can be achieved with the partial factor of 1.25.

키워드

과제정보

The work described in this paper was supported by the Chinese National Engineering Research Centre (CNERC) for Steel Construction (Hong Kong Branch) at The Hong Kong Polytechnic University (Project No. 1-BBYQ) and was also partially supported by the Guangdong Basic and Applied Basic Research Funding-Regional Joint Fund for Youth Project under Grant 2022A1515110057.

참고문헌

  1. ABAQUS (2014), ABAQUS Analysis User's Manual (Version 6.14), Dassault Systemes Simulia Corp., Providence, USA.
  2. Adewole, K.K. and Teh, L.H. (2017), "Predicting steel tensile responses and fracture using the phenomenological ductile shear fracture model", J Mater Civ Eng. 29(12), 06017019. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002094.
  3. Bai, Y. (2007), Effect of Loading History on Necking and Fracture, Ph.D. Dissertation. Massachusetts Institute of Technology, Cambridge, USA.
  4. Bijlaard, F., Sedlacek, G. and Stark, J. (1987), Procedure for the determination of design resistance from tests. Background Report to Eurocode 3, Common Unified Rules for Steelstructures", BI-87-112, TNO, Delft, Netherlands.
  5. Bijlaard, P.P. (1940), "Theory of local plastic deformations", Publication of the International Association of Bridge and Structural Engineers. 6, 27-44.
  6. Brady, W.G. and Drucker, D.C. (1953), "Plastic strength of structural members: A symposium: investigation and limit analysis of net area in tension. with discussion by Messrs. William H. Munse; Paul P. Bijlaard; and W. Gordon Brady and Daniel C. Drucker", Trans. Am. Soc. Civ. Eng., 120(1), 1133-1154. https://doi.org/10.1061/TACEAT.0007135
  7. BS EN 1990: 2002+ A1: 2005 (2005a), Eurocode-Basis of structural design, European Committee for Standardization (CEN); London, UK.
  8. BS EN 1993-1-1 (2005b), Eurocode 3: Design of Steel Structures - Part 1-1: General Rules and Rules for Buildings, European Committee for Standardization (CEN); London, UK.
  9. BS EN 1993-1-8 (2005c), Eurocode 3: Design of steel Structures - Part 1-8: Design of Joints, European Committee for Standardization (CEN); London, UK.
  10. BS EN 1993-1-12 (2007), Eurocode 3: Design of Steel Structures - Part 1-12: Additional Rules for the Extension of EN 1993 up to Steel Grades S700, European Committee for Standardization (CEN); London, UK.
  11. Cho, Y., Teh, L.H., Young, B. and Ahmed, A. (2020), "Net section tension strength of bolted connections in ultra-high strength sheet steel during and after fire", J .Constr. Steel Res., 172, 106237. https://doi.org/10.1016/j.jcsr.2020.106237.
  12. Cochrane, V.H. (1908), Calculating Net Section of Riveted Tension Members and Fixing Rivet Stagger, New Nelson Bldg., Kansas, USA.
  13. Cochrane, V.H. (1922), "Rules for rivet hole deductions in tension members", Eng. News-Record. 89(16), 847-848.
  14. Corona, E. and Orient, G.E. (2014), An Evaluation of the JohnsonCook Model to Simulate Puncture of 7075 Aluminum Plates, Sandia National Lab.(SNL-NM), Albuquerque, USA.
  15. Drosopoulos, G.A., Stavroulakis, G.E. and Abdalla, K.M. (2012), "3D Finite element analysis of end - Plate steel joints", Steel Compos. Struct., 12(2), 93-115. https://doi.org/10.12989/scs.2012.12.2.093.
  16. Farahani, H.K., Ketabchi, M. and Zangeneh, S. (2017), "Determination of Johnson-Cook plasticity model parameters for Inconel718", J Mater Eng Perform. 26(11), 5284-5293. https://doi.org/10.1007/s11665-017-2990-2.
  17. Jia, L.J. and Kuwamura, H. (2014), "Ductile fracture simulation of structural steels under monotonic tension", J Struct Eng. 140(5), 04013115. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000944.
  18. Jiang, K., Tan, K.H. and Zhao, O. (2021), "Net section fracture of S700 high strength steel staggered bolted connections", ThinWalled Struct., 164, 107904. https://doi.org/10.1016/j.tws.2021.107904.
  19. Johnson, G.R. and Cook, W.H. (1985), "Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures", Eng Fract Mech. 21(1), 31-48. https://doi.org/10.1016/0013-7944(85)90052-9.
  20. Kim, T., Jeong, H. and Cho, T. (2011), "The finite element analysis of the ultimate behavior of thin-walled carbon steel bolted connections", J Constr Steel Res. 67(7), 1086-1095. https://doi.org/10.1016/j.jcsr.2011.01.004.
  21. Li, D., Uy, B., Patel, V. and Aslani, F. (2016), "Behaviour and design of demountable steel column-column connections", Steel Compos. Struct., 22(2), 429-448. https://doi.org/10.12989/scs.2016.22.2.429.
  22. Li, D., Uy, B. and Wang, J. (2019), "Behaviour and design of highstrength steel beam-to-column joints", Steel Compos. Struct., 31(3), 303-317. https://doi.org/10.12989/scs.2019.31.3.303
  23. Lin, X.M., Yam, M.C.H., Chung, K.F., Ke, K. and He, Q. (2021a), "Experimental and numerical study on net section resistance of high strength steel staggered bolted connections", Eng Struct. 247, 113111. https://doi.org/10.1016/j.engstruct.2021.113111.
  24. Lin, X.M., Yam, M.C.H., Chung, K.F. and Lam, A.C.C. (2021b), "A study of net-section resistance of high strength steel bolted connections", Thin-Wall. Struct., 159, 107284. https://doi.org/10.1016/j.tws.2020.107284.
  25. Ling, Y. (1996), "Uniaxial true stress-strain after necking", AMP J. Technol., 5, 37-48.
  26. Long, L., Yan, Y., Gao, X. and Kang, H. (2016), "Three-dimensional finite element simulation and application of highstrength bolts", Steel Compos. Struct., 20(3), 501-512. https://doi.org/10.12989/scs.2016.20.3.501.
  27. McGuire, W. and Winter, G. (1968), Steel Structures, Englewood Cliffs, N.J. : Prentice-Hall, Inc., United States of America.
  28. Munse, W.H. and Chesson, E. (1963), "Riveted and bolted joints: net section design", J Struct Div-ASCE. 89(1), 107-126. https://doi.org/10.1061/JSDEAG.0000869
  29. Pang, X.P., Hu, Y., Tang, S.L., Xiang, Z., Wu, G., Xu, T. and Wang, X.Q. (2019), "Physical properties of high-strength bolt materials at elevated temperatures", Results Phys., 13, 102156. https://doi.org/10.1016/j.rinp.2019.102156.
  30. Smith, T.A. (1915), "Diagram for net section of riveted tension members", Eng. News Record, 73.
  31. Tartaglia, R., D'Aniello, M., Zimbru, M. and Landolfo, R. (2018), "Finite element simulations on the ultimate response of extended stiffened end-plate joints", Steel Compos. Struct., 27(6), 727-745. https://doi.org/10.12989/scs.2018.27.6.727.
  32. Teh, L.H. and Clements, D.D. (2012), "Tension capacity of staggered bolted connections in cold-reduced steel sheets", J Struct. Eng., 138(6), 769-776. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000514.
  33. Timoshenko, S. (1955), Strength of Materials: Part I. Elementary, D. Van Nostrand Co., Inc, England.
  34. Wang, J. and Sun, Q. (2019), "Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading", Steel Compos. Struct., 32(2), 199-212. https://doi.org/10.12989/scs.2019.32.2.199.
  35. Wang, J., Zhu, H., Uy, B., Patel, V., Aslani, F. and Li, D. (2018), "Moment-rotation relationship of hollow-section beam-tocolumn steel joints with extended end-plates", Steel Compos. Struct., 29(6), 717-734. https://doi.org/10.12989/scs.2018.29.6.717.
  36. Wei, F., Fang, C., Yam, M.C. and Zhang, Y. (2015), "Fracture behaviour and design of steel tensile connections with staggered bolt arrangements", Int J Steel Struct. 15(4), 863-879. https://doi.org/10.1007/s13296-015-1208-4.
  37. Wierzbicki, T., Bao, Y., Lee, Y.W. and Bai, Y. (2005), "Calibration and evaluation of seven fracture models", Int. J. Mech. Sci., 47(4), 719-743. https://doi.org/10.1016/j.ijmecsci.2005.03.003.
  38. Wilson, W.M., Munse, W.H. and Cayci, M.A. (1952), A Study of the Practical Efficiency under Static Loading of Riveted Joints Connecting Plates, Engineering Experiment Station. Bulletin; No. 402. University of Illinois, Urbana Champaign, USA.