DOI QR코드

DOI QR Code

Prediction of tensile strength degradation of corroded steel based on in-situ pitting evolution

  • Yun Zhao (College of Civil Engineering, Taiyuan University of Technology) ;
  • Qi Guo (College of Civil Engineering, Taiyuan University of Technology) ;
  • Zizhong Zhao (College of Civil Engineering, Taiyuan University of Technology) ;
  • Xian Wu (Shanxi Fifth Construction Group Co., Ltd.) ;
  • Ying Xing (College of Civil Engineering, Taiyuan University of Technology)
  • Received : 2022.02.12
  • Accepted : 2023.01.26
  • Published : 2023.02.10

Abstract

Steel is becoming increasingly popular due to its high strength, excellent ductility, great assembly performance, and recyclability. In reality, steel structures serving for a long time in atmospheric, industrial, and marine environments inevitably suffer from corrosion, which significantly decreases the durability and the service life with the exposure time. For the mechanical properties of corroded steel, experimental studies are mainly conducted. The existing numerical analyses only evaluate the mechanical properties based on corroded morphology at the isolated time-in-point, ignoring that this morphology varies continuously with corrosion time. To solve this problem, the relationships between pit depth expectation, standard deviation, and corrosion time are initially constructed based on a large amount of wet-dry cyclic accelerated test data. Successively, based on that, an in-situ pitting evolution method for evaluating the residual tensile strength of corroded steel is proposed. To verify the method, 20 repeated simulations of mass loss rates and mechanical properties are adopted against the test results. Then, numerical analyses are conducted on 135 models of corrosion pits with different aspect ratios and uneven corrosion degree on two corroded surfaces. Results show that the power function with exponents of 1.483 and 1.091 can well describe the increase in pit depth expectation and standard deviation with corrosion time, respectively. The effect of the commonly used pit aspect ratios of 0.10-0.25 on yield strength and ultimate strength is negligible. Besides, pit number ratio α equating to 0.6 is the critical value for the strength degradation. When α is less than 0.6, the pit number increases with α, accelerating the degradation of strength. Otherwise, the strength degradation is weakened. In addition, a power function model is adopted to characterize the degradation of yield strength and ultimate strength with corrosion time, which is revised by initial steel plate thickness.

Keywords

Acknowledgement

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 52208192) and the Fundamental Research Program of Shanxi Province, China (No. 202103021224047).

References

  1. Cerit, M. (2019), "Corrosion pit-induced stress concentration in spherical pressure vessel", Thin Wall. Struct., 136, 106-112. https://doi.org/10.1016/j.tws.2018.12.014.
  2. Chen, B.S., Roy, K., Uzzaman, A. and Lim, J.B.P. (2020), "Moment capacity of cold-formed channel beams with edge-stiffened web holes, un-stiffened web holes and plain webs", Thin Wall. Struct., 157, 107070. https://doi.org/10.1016/j.tws.2020.107070.
  3. Cheng, C.Q., Klinkenberg, L.I., Ise, Y., Zhao, J., Tada, E. and Nishikata, A. (2017), "Pitting corrosion of sensitised type 304 stainless steel under wet-dry cycling condition", Corros. Sci., 118, 217-226. https://doi.org/10.1016/j.corsci.2017.02.010.
  4. Denissen, P.J., Homborg, A.M. and Garcia, S.J. (2018), "Interpreting electrochemical noise and monitoring local corrosion by means of highly resolved spatiotemporal real-time optics", J. Electrochem. Soc., 166, C3275-C3283. https://doi.org/10.1016/j.corsci.2021.109885.
  5. Fang, Z.Y., Roy, K., Mares, J., Sham, C.W., Chen, B.S. and Lim, J.B.P. (2021), "Deep learning-based axial capacity prediction for cold-formed steel channel sections using Deep Belief Network", Structures, 33, 2792-2802. https://doi.org/10.1016/j.istruc.2021.05.096.
  6. Guo, Q., Zhao, Y., Xing, Y., Jiao, J.F., Fu, B.Z. and Wang, Y.Q. (2022), "Experimental and numerical analysis of mechanical behaviors of long-term atmospheric corroded Q235 steel", Structures, 39, 115-131. https://doi.org/10.1016/j.istruc.2022.03.027.
  7. Gao, S., Peng Z., Wang, X.D. and Liu J.P. (2019), "Compressive behavior of circular hollow and concrete-filled steel tubular stub columns under atmospheric corrosion", Steel Compos. Struct., 33(4), 614-627. https://doi.org/10.12989/scs.2019.33.4.615.
  8. Harlow, D.G. and Wei, R.P. (2001), "Probabilities of occurrence and detection of damage in airframe materials", Fatigue Fract. Eng. Mater. Struct., 22, 427-436. https://doi.org/10.1046/j.1460-2695.1999.00168.x.
  9. ISO 16151 (2005), Corrosion of Metals and Alloys - Accelerated Cyclic Tests with Exposure to Acidified Salt Spray, "dry" and "wet" Conditions.
  10. Kainuma, S., Jeong, Y.S. and Ahn, J.H. (2015), "Stress distribution on the real corrosion surface of the orthotropic steel bridge deck", Steel Compos. Struct., 18(6) 1479-1492. http://dx.doi.org/10.12989/scs.2015.18.6.1479.
  11. Li, Y., Hu, R.G., Wang, J.R., Huang, Y.X. and Lin, C.J. (2009), "Corrosion initiation of stainless steel in HCl solution studied using electrochemical noise and in-situ atomic force microscope", Electrochim. Acta., 54, 7134-7140. https://doi.org/10.1016/j.electacta.2009.07.042.
  12. Lu, Y., Wang, R.Q., Han, Q.H., Yu, X.L. and Yu, Z.C. (2022), "Experimental investigation on the corrosion and corrosion fatigue behavior of butt weld with G20Mn5QT cast steel and Q355D steel under dry-wet cycle", Eng. Fail. Anal., 134, 105977. https://doi.org/10.1016/j.engfailanal.2021.105977.
  13. Liang, X.Z., Sheng, J. and Wang, K. (2019), "Investigation of the mechanical properties of steel plates with artificial pitting and the effects of mutual pitting on the stress concentration factor", Results Phys., 14, 102520. https://doi.org/10.1016/j.rinp.2019.102520.
  14. Ma, Y.F., Guo, Z.Z., Wang, L. and Zhang, J.R. (2020), "Probabilistic life prediction for reinforced concrete structures subjected to seasonal corrosion-fatigue damage", J. Struct. Eng., 146, 04020117. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002666.
  15. Ma, Y.F., Guo, Z.Z., Wang, L. and Zhang, J.R. (2017), "Experimental investigation of corrosion effect on bond behavior between reinforcing bar and concrete", Constr. Build. Mater., 152, 240-249. http://dx.doi.org/10.1016/j.conbuildmat.2017.06.169.
  16. Nakai, T., Matsushita, H., Yamamoto, N. and Arai, H. (2004), "Effect of pitting corrosion on local strength of hold frames of bulk carriers (1st report)", Mar. Struct., 17, 403-432. https://doi.org/10.1016/j.marstruc.2004.10.001.
  17. Nie, B., Xu, S.H., Yu, J. and Zhang, H.J. (2019), "Experimental investigation of mechanical properties of corroded cold-formed steels", J. Constr. Steel Res., 162, 105706. https://doi.org/10.1016/j.jcsr.2019.105706.
  18. Rivas, D., Caleyo, F., Valor, A. and Hallen, J.M. (2008), "Extreme value analysis applied to pitting corrosion experiments in low carbon steel: Comparison of block maxima and peak over threshold approaches", Corros. Sci., 50, 3193-3204. https://doi.org/10.1016/j.corsci.2008.08.002.
  19. Roy, K., Chen, B.S., Fang, Z.Y., Uzzaman, A., Chen, X. and Lim, J.B.P. (2021), "Local and distortional buckling behaviour of back-to-back built-up aluminium alloy channel section columns", Thin Wall. Struct., 163, 107713. https://doi.org/10.1016/j.tws.2021.107713.
  20. Roy, K., Lau, H.H., Fang, Z.Y., Masood, R., Ting, T.C.H., Lim, J.B.P. and Lee V.C.C. (2022), "Effects of corrosion on the strength of self-drilling screw connections in cold-formed steel structures-experiments and finite element modeling", Structures, 36, 1080-1096. https://doi.org/10.1016/j.istruc.2021.12.052.
  21. Roy, K., Lau, H.H. and Lim, J.B.P. (2019a), "Numerical investigations on the axial capacity of back-to-back gapped built-up cold-formed stainless steel channels", Adv. Struct. Eng., 22, 2289-2310. https://doi.org/10.1177/1369433219837390.
  22. Roy, K., Lau, H.H., Ting, T.C.H., Masood, R., Kumar, A. and Lim, J.B.P. (2019b), "Experiments and finite element modelling of screw pattern of self-drilling screw connections for high strength cold-formed steel", Thin Wall. Struct., 145, 106393, https://doi.org/10.1016/j.tws.2019.106393.
  23. Roy, K., Mohammadjani, C. and Lim, J.B.P. (2018), "Experimental and numerical investigation into the behaviour of face-to-face built-up cold-formed steel channel sections under compression", Thin Wall. Struct., 134, 291-309. https://doi.org/10.1016/j.tws.2018.09.045.
  24. Sadananda, K. and Vasudevan, A.K. (2020), "Analysis of pit to crack transition under corrosion fatigue & the safe-life approach using the modified Kitagawa-Takahashi diagram", Int. J. Fatigue, 134, 105471. https://doi.org/10.1016/j.ijfatigue.2020.105471.
  25. Sheng, J. and Xia, J.W. (2017), "Effect of simulated pitting corrosion on the tensile properties of steel", Constr. Build. Mater., 131, 90-100. https://doi.org/10.1016/j.conbuildmat.2016.11.037.
  26. Solimana, A.A., Megahed, M.M., Saleh, C.A.R. and Shazly, M. (2018), "Pressure carrying capacities of thin walled pipes suffering from random colonies of pitting corrosion", Int. J. Pres. Ves. Pip., 166, 48-60. https://doi.org/10.1016/j.ijpvp.2018.08.003.
  27. Su, H., Wang, J. and Du, J.S. (2020), "Fatigue behavior of corroded non-load-carrying bridge weathering steel Q345qDNH fillet welded joints", Structures, 26, 859-869. https://doi.org/10.1016/j.istruc.2020.05.019.
  28. Wang, G.D., Ma, Y.F., Wang, L. and Zhang, J.R. (2021), "Experimental study and residual fatigue life assessment of corroded high-tensile steel wires using 3D scanning technology", Eng. Fail. Anal., 124, 105335. https://doi.org/10.1016/j.engfailanal.2021.105335.
  29. Wang, Y.D., Xu, S.H., Wang, H. and Li, A.B. (2017), "Predicting the residual strength and deformability of corroded steel plate based on the corrosion morphology", Constr. Build. Mater., 152, 777-793. https://doi.org/10.1016/j.conbuildmat.2017.07.035.
  30. Wu, H.Y., Lei, H.G., Chen, Y.F. and Qiao J.Y. (2019), "Comparison on corrosion behaviour and mechanical properties of structural steel exposed between urban industrial atmosphere and laboratory simulated environment", Constr. Build. Mater., 211, 228-243. https://doi.org/10.1016/j.conbuildmat.2019.03.207.
  31. Wu, H.Y. (2020), Experimental and Theoretical Research on the Static and Fatigue Performance of Structural Steel Based on Atmospheric and Accelerated Corrosion Correlation, Ph.D. Dissertation, Taiyuan University of Technology, Taiyuan. (in Chinese)
  32. Yao, Y., Yang, Y., He, Z. and Wang, Y.P. (2018), "Experimental study on generalized constitutive model of hull structural plate with multi-parameter pitting corrosion", Ocean Eng., 170, 407-15. https://doi.org/10.1016/j.oceaneng.2018.10.038.
  33. Yu, J.X., Wang, H.K., Fan, Z.Y. and Yu, Y. (2017), "Computation of plastic collapse capacity of 2D ring with random pitting corrosion defect", Thin Wall. Struct., 119, 727-736. http://dx.doi.org/10.1016/j.tws.2017.07.025.
  34. Zhang, H.J., Xu, S.H., Nie, B. and Wen, Y.X. (2019), "Effect of corrosion on the fracture properties of steel plates", Constr. Build. Mater., 225, 1202-1213. https://doi.org/10.1016/j.conbuildmat.2019.07.345.
  35. Zhao, Z.W., Zhang, H.W., Xian, L.N. and Liu, H.Q. (2020), "Tensile strength of Q345 steel with random pitting corrosion based on numerical analysis", Thin Wall. Struct., 148, 106579. https://doi.org/10.1016/j.tws.2019.106579.