Acknowledgement
Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP-HC2022/7), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
References
- Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct, 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
- Abouelregal, A.E., Mohammad-Sedighi, H., Faghidian, S.A. and Shirazi, A.H. (2021a), "Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load", Facta Universitatis. Series: Mech. Eng., 19(4), 633-656. https://doi.org/10.22190/FUME201222024A.
- Abouelregal, A.E., Mohammed, W.W. and Mohammad-Sedighi, H. (2021b), "Vibration analysis of functionally graded microbeam under initial stress via a generalized thermoelastic model with dual-phase lags", Archive Appl. Mech., 91(5), 2127-2142. https://doi.org/10.1007/s00419-020-01873-2.
- Aboueregal, A.E. and Sedighi, H.M. (2021), "The effect of variable properties and rotation in a visco-thermoelastic orthotropic annular cylinder under the Moore-Gibson-Thompson heat conduction model", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(5), 1004-1020. https://doi.org/10.1177/1464420720985899.
- Adiyaman, G., Birinci, A., Oner, E. and Yaylaci, M. (2016), "A receding contact problem between a functionally graded layer and two homogeneous quarter planes", Acta Mechanica, 227(6), 1753-1766. https://doi.org/10.1007/s00707-016-1580-y.
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng, 17(2), 175-180 . https://doi.org/10.12989/gae.2019.17.2.175.
- Aiello, M.A. and Ombres, L. (1999), "Buckling and vibrations of unsymmetric laminates resting on elastic foundations under inplane and shear forces", Compos. Struct., 44(1), 31-41. https://doi.org/10.1016/S0263-8223(98)00116-0.
- Ait, Amar, Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852.
- AkbaS, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/SCS.2015.19.6.1421.
- AkgOz, B. and Civalek, O. (2013), "Buckling analysis of functionally graded microbeams based on the strain gradient theory", Acta Mechanica, 224(9), 2185-2201. doi:10.1007/s00707-013-0883-5.
- Alibeigloo, A. and Liew, K.M. (2014), "Free vibration analysis of sandwich cylindrical panel with functionally graded core using three-dimensional theory of elasticity", Compos. Struct., 113, 23-30. https://doi.org/10.1016/j.compstruct.2014.03.004.
- Allahkarami, F., Satouri, S. and Najafizadeh, M.M. (2016), "Mechanical buckling of two-dimensional functionally graded cylindrical shells surrounded by Winkler-Pasternak elastic foundation", Mech. Adv. Mater. Struct., 23(8), 873-887. https://doi.org/10.1080/15376494.2015.1036181.
- Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. http://dx.doi.org/10.12989/gae.2021.24.1.091.
- Anderson, T.A. (2003), "A 3-D elasticity solution for a sandwich composite with functionally graded core subjected to transverse loading by a rigid sphere", Compos. Struct., 60(3), 265-274. doi:10.1016/s0263-8223(03)00013-8.
- Arefi, M. and Zur, K.K. (2020), "Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis", Steel Compos. Struct., 34(4), 615-623. https://doi.org/10.12989/scs.2020.34.4.615.
- Asiri, S.A., AkbaS, S.D. and Eltaher, M.A. (2020), "Damped dynamic responses of a layered functionally graded thick beam under a pulse load", Struct. Eng. Mech., 75(6), 713-722. https://doi.org/10.12989/SEM.2020.75.6.713.
- Asrari, R., Ebrahimi, F. and Kheirikhah, M.M. (2020), "On postbuckling characteristics of functionally graded smart magnetoelectro-elastic nanoscale shells", Adv. Nano Res., 9(1), 33-45. https://doi.org/10.12989/anr.2020.9.1.033.
- Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci. 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/SCS.2019.30.6.603.
- Balubaid, M., Abdo, H., Ghandourah, E. and Mahmoud, S.R. (2021), "Dynamical behavior of the orthotropic elastic material using an analytical solution", Geomech. Eng., 25(4), 331-339. http://dx.doi.org/10.12989/gae.2021.25.4.331.
- Bashiri, A.H., Akbas, S.D., Abdelrahman, A.A., Assie, A., Eltaher, M.A., Mohamed, E.F. (2021), "Vibration of multilayered functionally graded deep beams under thermal load", Geomech. Eng., 24(6), 545-557. http://dx.doi.org/10.12989/gae.2021.24.6.545.
- Bhangale, R.K. and Ganesan, N. (2006), "Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core", J. Sound Vib., 295(1-2), 294-316. http://doi.org/10.1016/j.jsv.2006.01.026.
- Bharath, H.S., Waddar, S., Bekinal, S.I., Jeyaraj, P. and Doddamani, M. (2020), "Effect of axial compression on dynamic response of concurrently printed sandwich", Compos. Struct., 113223. http://doi.org/10.1016/j.compstruct.2020.113223.
- Birinci, A., Adiyaman, G., Yaylaci, M. and Oner, E. (2015), "Analysis of continuous and discontinuous cases of a contact problem using analytical method and FEM", Latin Amer. J. Solids Struct., 12, 1771-1789. https://doi.org/10.1590/1679-78251574.
- Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Adda Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209.
- Chami, K, Messafer, T. and Hadji, L., (2020), "Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation", Earthq. Struct., 19(2), 91-101. https://doi.org/10.12989/eas.2020.19.2.091.
- Chen, W.Q., Lu, C.F. and Bian, Z.G. (2004), "A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation", Appl. Mathem. Modelling, 28(10), 877-890. https://doi.org/10.1016/j.apm.2004.04.001.
- Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/GAE.2015.9.5.631.
- Dean, J., S-fallah, A., Brown, P.M., Louca, L.A. and Clyne, T.W. (2011), "Energy absorption during projectile perforation of lightweight sandwich panels with metallic fibre cores", Compos. Struct., 93(3), 1089-1095. https://doi.org/10.1016/j.compstruct.2010.09.019.
- Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary threedimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.
- Ebrahimi, F. and Barati, M.R. (2016), "Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects", Acta Mechanica, 228(3), 1197-1210. https://doi.org/10.1007/s00707-016-1755-6.
- Eltaher, M.A. and AkbaS, S.D. (2020), "Transient response of 2D functionally graded beam structure", Struct. Eng. Mech., 75(3), 357-367. https://doi.org/10.12989/SEM.2020.75.3.357.
- Etemadi, E., Afaghi Khatibi, A. and Takaffoli, M. (2009), "3D finite element simulation of sandwich panels with a functionally graded core subjected to low velocity impact", Compos. Struct., 89(1), 28-34. https://doi.org/10.1016/j.compstruct.2008.06.013.
- Fan, Y., Xiang, Y. and Shen, H.S. (2018), "Nonlinear forced vibration of FG-GRC laminated plates resting on viscoPasternak foundations", Compos. Struct., 209, 443-452 https://doi.org/10.1016/j.compstruct.2018.10.084.
- Fazzolari, F. A. (2015), "Natural frequencies and critical temperatures of functionally graded sandwich plates subjected to uniform and non-uniform temperature distributions", Compos. Struct., 121, 197-210. https://doi.org/10.1016/j.compstruct.2014.10.039
- Ghandourh, E. E., & Abdraboh, A. M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., Int. J., 36(3), 293-305. https://doi.org/10.12989/scs.2020.36.3.293.
- Ghannadpour, S.A.M., Mohammadi, B., Fazilati, J. (2013), "Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method", Compos.Struct. 96:584-589. https://doi.org/ 10. 1016/j. compstruct. 2012. 08. 024. https://doi.org/10.1016/j.compstruct.2012.08.024
- Ghannadpour, S.A.M. and Mehrparvar, M. (2020), "Nonlinear and post-buckling responses of FGM plates with oblique elliptical cutouts using plate assembly technique", Steel Compos. Struct., Int. J. 34(2), 227-239. https://doi.org/10.12989/scs.2020.34.2.227.
- Gupta, U.S., Ansari, A.H. and Sharma, S. (2006), "Buckling and vibration of polar orthotropic circular plate resting on Winkler foundation", J. sound and vib., 297(3-5), 457-476. https://doi.org/10.1016/j.jsv.2006.01.073.
- Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., Int. J., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
- Hadji, L. and Avcar, M. (2021), "Free Vibration Analysis of FG Porous Sandwich Plates under Various Boundary Conditions", J. Appl. Comput. Mech., 7(2), 505-519. https://doi.org/10.22055/JACM.2020.35328.2628.
- Hashemi, S.H., Karimi, M. and Taher, H.R.D. (2010), "Vibration analysis of rectangular Mindlin plates on elastic foundations and vertically in contact with stationary fluid by the Ritz method", Ocean Eng., 37(2-3), 174-185. https://doi.org/10.1016/j.oceaneng.2009.12.001.
- Heidari, F., Afsari, A. and Janghorban, M. (2020), "Several models for bending and buckling behaviors of FG-CNTRCs with piezoelectric layers including size effects", Adv. nano res., 9(3), 193-210. https://doi.org/10.12989/anr.2020.9.3.193.
- Hosseini, M., Jamalpoor, A. and Fath, A. (2017), "Surface effect on the biaxial buckling and free vibration of FGM nanoplate embedded in visco-Pasternak standard linear solid-type of foundation", Meccanica, 52(6), 1381-1396. https://doi.org/10.1007/s11012-016-0469-0.
- Huang, Z. Y., Lu, C.F. and Chen, W. Q. (2008), "Benchmark solutions for functionally graded thick plates resting on Winkler-Pasternak elastic foundations", Compos. Struct., 85(2), 95-104. https://doi.org/10.1016/j.compstruct.2007.10.010.
- Karama, M., Afaq, K. S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity", Int. J. Sol. Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.
- Kashtalyan, M., and Menshykova, M. (2009), "Three-dimensional elasticity solution for sandwich panels with a functionally graded core", Compos. Struct., 87(1), 36-43. https://doi.org/10.1016/j.compstruct.2007.12.003.
- Katariya, P. V., and Panda, S. K. (2020), « Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Compos. Struct., Int. J., 34(2), 279-288. https://doi.org/10.12989/SCS.2020.34.2.279.
- Kertesz, S., Szerencses, S.G., Vereb, G., Csanadi, J., Laszlo, Z. and Hodur, C. (2020), "Single-and multi-stage dairy wastewater treatment by vibratory membrane separation processes", Membr. Water Treat., 11(6), 383-389. http://dx.doi.org/10.12989/mwt.2020.11.6.383.
- Kim, Y. W. (2015), "Free vibration analysis of FGM cylindrical shell partially resting on Pasternak elastic foundation with an oblique edge", Compos. Part B: Eng., 70, 263-276. https://doi.org/10.1016/j.compositesb.2014.11.024.
- Koizumi, M. (1993), "The concept of FGM", Ceramic transactions, 34, 3-10.
- Kunbar, L.A.H., Hamad, L.B., Ahmed, R.A. and Faleh, N. M. (2020), "Nonlinear vibration of smart nonlocal magneto-electroelastic beams resting on nonlinear elastic substrate with geometrical imperfection and various piezoelectric effects", Smart Struct. Syst., Int. J., 25(5), 619-630. https://doi.org/10.12989/SSS.2020.25.5.619.
- Lal, A., Singh, B.N., and Kumar, R. (2008), "Nonlinear free vibration of laminated composite plates on elastic foundation with random system properties", Int. J. Mech. Sciences, 50(7), 1203-1212. https://doi.org/10.1016/j.ijmecsci.2008.04.002.
- Lee, H. P. (1998), "Dynamic response of a Timoshenko beam on a Winkler foundation subjected to a moving mass", Applied Acoustics, 55(3), 203-215. https://doi.org/10.1016/S0003-682X(97)00097-2.
- Li, J., and Zhang, Y. (2021), "Multiscale calculation results of the flow behavior in micro/nano porous filtration membrane with the adsorbed layer-fluid interfacial slippage", Membr. Water Treatment, 12(3), 107-114. http://dx.doi.org/10.12989/mwt.2021.12.3.107.
- Li, M., Soares, C.G. Yan, R. (2021), "Free vibration analysis of FGM plates on Winkler/Pasternak/Kerr foundation by using a simple quasi-3D HSDT", Compos. Struct., 264, 113643 https://doi.org/10.1016/j.compstruct.2021.113643.
- Li, Z.M., and Yang, D.Q. (2016), "Thermal postbuckling analysis of anisotropic laminated beams with tubular cross-section based on higher-order theory", Ocean Eng., 115, 93-106. https://doi.org/10.1016/j.oceaneng.2016.02.017.
- LindstrOm, A., and HallstrOm, S. (2010), "Energy absorption of SMC/balsa sandwich panels with geometrical triggering features", Compos. Struct., 92 (11), 2676-2684. https://doi.org/10.1016/j.compstruct.2010.03.018
- Liu, B., Ferreira, A.J.M., Xing, Y. F., and Neves, A.M.A. (2016), "Analysis of functionally graded sandwich and laminated shells using a layerwise theory and a differential quadrature finite element method", Compos. Struct., 136, 546-553. https://doi.org/10.1016/j.compstruct.2015.10.044.
- Liu, W.Q., Liu, S.J., Fan, M.Y., Tian, W., Wang, J. P. and Tahouneh, V. (2020), "Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns", Steel Compos. Struct., Int. J., 35(2), 295-306. https://doi.org/10.12989/scs.2020.35.2.295.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., Int. J., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
- Madenci, E. (2021), "Free vibration and static analyses of metalceramic FG beams via high-order variational MFEM", Steel Compos. Struct., Int. J., 39(5), 493-509. http://dx.doi.org/10.12989/scs.2021.39.5.493.
- Malekzadeh, P. and Karami, G. (2004), "Vibration of non-uniform thick plates on elastic foundation by differential quadrature method", Eng. Struct., 26(10), 1473-1482. https://doi.org/10.1016/j.engstruct.2004.05.008
- Malekzadeh, P. and Karami, G. (2008), "A mixed differential quadrature and finite element free vibration and buckling analysis of thick beams on two-parameter elastic foundations", Appl. Mathematical Modelling, 32(7), 1381-1394. https://doi.org/10.1016/j.apm.2007.04.019
- Mantari, J. L. and Granados, E.V. (2015a), "Dynamic analysis of functionally graded plates using a novel FSDT", Compos. Part B: Eng., 75, 148-155. https://doi.org/10.1016/j.compositesb.2015.01.028.
- Mantari, J.L. and Granados, E.V. (2015b), "A refined FSDT for the static analysis of functionally graded sandwich plates", ThinWalled Struct., 90, 150-158. https://doi.org/10.1016/j.tws.2015.01.015.
- Merzoug, M., Bourada, M., Sekkal, M., Abir, A.C., Chahrazed, B., Benyoucef, S., and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. and Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361
- Mindlin, R. D. (1951), "Thickness shear and flexural vibrations of crystal plates", J. appl. physics, 22(3), 316-323. https://doi.org/10.1063/1.1699948.
- Naz, A., Masood, H., Ehsan, S., Tahir, T. (2020), "Removal of acid black 1 by Acacia Concinna; adsorption kinetics, isotherm and thermodynamic study", Membrane Water Treatment, 11(6), 407-416. http://dx.doi.org/10.12989/sem.2020.11.6.407.
- Nazemnezhad, R., and Shokrollahi, H. (2020), "Free axial vibration of cracked axially functionally graded nanoscale rods incorporating surface effect", Steel and Compos. Struct., Int. J., 35(3), 449-462. https://doi.org/10.12989/scs.2020.35.3.449.
- Nebab, M., Atmane, H.A., Bennai, R., and Tahar, B. (2019), "Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory", Earthq. Struct., 17(5), 447-462.https://doi.org/10.12989/eas.2019.17.5.447.
- Nebab, M., Benguediab, S., Atmane, H.A., and Bernard, F. (2020), "A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations", Geomech. Eng., 22(5), 415-431. http://dx.doi.org/10.12989/gae.2020.22.5.415
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Jorge, R. M.N., and Soares, C.M.M. (2012), "Buckling analysis of sandwich plates with functionally graded skins using a new quasi-3D hyperbolic sine shear deformation theory and collocation with radial basis functions", ZAMM-J. Appl. Math. Mech./Zeitschrift fur Angewandte Mathematik und Mechanik, 92(9), 749-766. https://doi.org/10.1002/zamm.201100186
- Oner, E., Sengul Sabano, B., Uzun Yaylaci, E., Adiyaman, G., Yaylaci, M. and Birinci, A. (2022), "On the plane receding contact between two functionally graded layers using computational, finite element and artificial neural network methods", ZAMM-J. Appl. Math. Mech./Zeitschrift fur Angewandte Mathematik und Mechanik, 102(2), e202100287. https://doi.org/10.1002/zamm.202100287.
- Oner, E., Yaylaci, M., and Birinci, A. (2014), "Solution of a receding contact problem using an analytical method and a finite element method", J. Mech. Mater. Struct., 9(3), 333-345. https://doi.org/10.2140/jomms.2014.9.333,
- Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.
- Ouakad, H.M., Valipour, A., Zur, K.K., Sedighi, H.M. and Reddy, J.N. (2020), "On the nonlinear vibration and static deflection problems of actuated hybrid nanotubes based on the stressdriven nonlocal integral elasticity", Mech. Mater., 148, 103532. https://doi.org/10.1016/j.mechmat.2020.103532.
- Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-art", Trends Civil Eng. Architect, 3(1), 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
- Pasternak, P.L. (1954), "On a new method of an elastic foundation by means of two foundation constants", Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstuve i Arkhitekture, Moscow.
- Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bouiadjra, R.B., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
- Rahmani, M., Mohammadi, Y., Kakavand, F. and Raeisifard, H. (2020), "Vibration analysis of different types of porous FG conical sandwich shells in various thermal surroundings", J. Appl. Comput. Mech., 6(3), 416-432. https://doi.org/10.22055/jacm.2019.29442.1598.
- Ramteke, P.M. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. https://doi.org/10.12989/SCS.2019.33.6.865.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech. 51(4) 745-752. https://doi.org/10.1115/1.3167719.
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., A69-A77. https://doi.org/10.1115/1.4009435.
- Saha, K.N., Kar, R.C. and Datta, P.K. (1997), "Dynamic stability of a rectangular plate on non-homogeneous Winkler foundation", Comput. Struct., 63(6), 1213-1222. https://doi.org/10.1016/S0045-7949(96)00390-2.
- Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/SSS.2020.26.3.361.
- Shariati, A., Ebrahimi, F., Karimiasl, M., Vinyas, M. and Toghroli, A. (2020), "On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading", Adv. Nano Res., 8(1), 49-58. https://doi.org/10.12989/anr.2020.8.1.049.
- Shen, H.S. and Li, S.R. (2008), "Postbuckling of sandwich plates with FGM face sheets and temperature-dependent properties", Compos. Part B: Eng., 39(2), 332-344. https://doi.org/10.1016/j.compositesb.2007.01.004.
- Shen, H.S. and Yang, D.Q. (2014), "Nonlinear vibration of anisotropic laminated cylindrical shells with piezoelectric fiber reinforced composite actuators", Ocean Eng., 80, 36-49. https://doi.org/10.1016/j.oceaneng.2014.01.016.
- Shodja, H.M., Haftbaradaran, H. and Asghari, M. (2007), "A thermoelasticity solution of sandwich structures with functionally graded coating", Compos. Sci. Technol., 67(6), 1073-1080. https://doi.org/10.1016/j.compscitech.2006.06.001.
- Sobamowo, G. (2020), "Finite element thermal analysis of a moving porous fin with temperature-variant thermal conductivity and internal heat generation", Reports Mech. Eng., 1(1), 110-127. https://doi.org/10.31181/rme200101110s.
- Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.
- Soldatos, K. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mechanica, 94(3), 195-220. https://doi.org/10.1007/BF01176650.
- Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. https://doi.org/10.12989/CAC.2020.26.1.053.
- Tj, H.G., Mikami, T., Kanie, S. and Sato, M. (2006), "Free vibration characteristics of cylindrical shells partially buried in elastic foundations", J. Sound Vib., 290(3-5), 785-793. https://doi.org/10.1016/j.jsv.2005.04.014.
- Tornabene, F., Fantuzzi, N., Viola, E. and Reddy, J.N. (2014), "Winkler-Pasternak foundation effect on the static and dynamic analyses of laminated doubly-curved and degenerate shells and panels", Compos. Part B: Eng., 57, 269-296. https://doi.org/10.1016/j.compositesb.2013.06.020.
- Touratier, M. (1991), "An efficient standard plate theory", International journal of engineering science, 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
- Trabelsi, S., Zghal, S. and Dammak, F. (2020), "Thermo-elastic buckling and post-buckling analysis of functionally graded thin plate and shell structures", J. Brazil. Soc. Mech. Sci. Eng., 42(5), 1-22. https://doi.org/10.1007/s40430-020-02314-5.
- Van Vinh, P. (2021), "Formulation of a new mixed four-node quadrilateral element for static bending analysis of variable thickness functionally graded material plates", Mathem. Prob. Eng., 6653350. https://doi.org/10.1155/2021/6653350.
- Vinson, J.R. (2001), "Sandwich structures", Appl. Mech. Rev, 54(3), 201-214. https://doi.org/10.1115/1.3097295
- Vinson, J.R. (2005), "Sandwich structures: past, present, and future.", In Sandwich Structures 7: Advancing with Sandwich Structures and Materials (pp. 3-12)", Springer, Dordrecht. https:// doi: 10.1007/1-4020-3848-8_1
- Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
- Wang, Y.Q. and Zu, J.W. (2017), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aeros. Sci. Technol., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023.
- Wang, Y.Q., Huang, X.B. and Li, J. (2016), "Hydroelastic dynamic analysis of axially moving plates in continuous hot-dip galvanizing process", Int. J. Mech. Sci., 110, 201-216. https://doi.org/10.1016/j.ijmecsci.2016.03.010.
- Wang, Z.X. and Shen, H.S. (2013), "Nonlinear dynamic response of sandwich plates with FGM face sheets resting on elastic foundations in thermal environments", Ocean Eng., 57, 99-110. https://doi.org/10.1016/j.oceaneng.2012.09.004.
- Willert, E. (2021), "FFT-based Implementation of the MDR transformations for homogeneous and power-law graded materials", Facta Universitatis. Series: Mechanical Engineering, 19(4), 805-816. https://doi.org/10.22190/FUME210415057W.
- Winkler, E. (1867), Die Lehre von Elastizitat und Festigkeit (on Elasticity and Fixity, Dominicus, Prague.
- Yaghoobi, H. and Yaghoobi, P. (2013), "Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: an analytical approach", Meccanica, 48(8), 2019-2035. https://doi.org/10.1007/s11012-013-9720-0.
- Yamanouchi, M., Koizumi, M., Hirai, T. and Shiota, I. (1990), "Proceedings of the first international symposium on functionally gradient materials", Sendai, Japan.
- Yaylaci, E.U., Yaylaci, M., Olmez, H. and Birinci, A. (2020b), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563. https://doi.org/10.12989/cac.2020.25.6.551.
- Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org10.12989/sem.2016.57.6.1143.
- Yaylaci, M. (2022), "Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method", Advances Nano Res., 12(4), 405-414. https://doi.org/10.12989/anr.2022.12.4.405.
- Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
- Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D.M. and Birinci, A. (2022a), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/SCS.2022.43.5.661.
- Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D.M. and Birinci, A. (2022b), "Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods", Archive Appl. Mech., 92(6), 1953-1971. https://doi.org/10.1007/s00419-022-02159-5.
- Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2020a), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.
- Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2021a), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.
- Yaylaci, M., Eyuboglu, A., Adiyaman, G., Yaylaci, E.U., Oner, E. and Birinci, A. (2021b), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.
- Yaylaci, M., Sabano, B.S., Ozdemir, M.E. and Birinci, A. (2022c), "Solving the contact problem of functionally graded layers resting on a HP and pressed with a uniformly distributed load by analytical and numerical methods", Struct. Eng. Mech., 82(3), 401-416. https://doi.org/10.12989/sem.2022.82.3.401.
- Yaylaci, M., Yayli, M., Yaylaci, E.U., Olmez, H. and Birinci, A. (2021c), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
- Zamani, H.A., Aghdam, M.M. and Sadighi, M. (2017), "Free vibration analysis of thick viscoelastic composite plates on visco-Pasternak foundation using higher-order theory", Compos. Struct., 182, 25-35. https://doi.org/10.1016/j.compstruct.2017.08.101.
- Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration", Int. J. Solids Struct., 42(18-19), 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016.
- Zenkour, A.M. (2016), "Buckling of a single-layered graphene sheet embedded in visco-Pasternak", Adv. Nano Res., 4(4), 309. http://dx.doi.org/10.12989/anr.2016.4.4.309.
- Zenkour, A.M. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct., 93(1), 93-102. https://doi.org/10.1016/j.compstruct.2010.06.012.
- Zhang, W. (2001), "Global and chaotic dynamics for a parametrically excited thin plate", J. Sound Vib., 239(5), 1013-1036. https://doi.org/10.1006/jsvi.2000.3182.
- Zouatnia, N. and Hadji, L. (2019), "Static and free vibration behavior of functionally graded sandwich plates using a simple higher order shear deformation theory", Adv. Mater. Res., 8(4), 313-335. https://doi.org/10.12989/amr.2019.8.4.313.