DOI QR코드

DOI QR Code

Finite-element analysis and design of aluminum alloy RHSs and SHSs with through-openings in bending

  • Ran Feng (School of Civil and Environmental Engineering, Harbin Institute of Technology) ;
  • Tao Yang (School of Civil and Environmental Engineering, Harbin Institute of Technology) ;
  • Zhenming Chen (School of Civil and Environmental Engineering, Harbin Institute of Technology) ;
  • Krishanu Roy (School of Engineering, The University of Waikato) ;
  • Boshan Chen (Department of Civil Engineering, Tsinghua University) ;
  • James B.P. Lim (School of Engineering, The University of Waikato)
  • 투고 : 2021.08.08
  • 심사 : 2023.01.25
  • 발행 : 2023.02.10

초록

This paper presents a finite-element analysis (FEA) of aluminum alloy rectangular hollow sections (RHSs) and square hollow sections (SHSs) with circular through-openings under three-point and four-point bending. First, a finite-element model (FEM) was developed and validated against the corresponding test results available in the literature. Next, using the validated FE models, a parametric study comprising 180 FE models was conducted. The cross-section width-to-thickness ratio (b/t) ranged from 2 to 5, the hole size ratio (d/h) ranged from 0.2 to 0.8 and the quantity of holes (n) ranged from 2 to 6, respectively. Third, results obtained from laboratory test and FEA were compared with current design strengths calculated in accordance with the North American Specifications (NAS), the modified direct strength method (DSM) and the modified Continuous strength method (CSM). The comparison shows that the modified CSM are conservative by 15% on average for aluminum alloy RHSs and SHSs with circular through-openings subject to bending. Finally, a new design equation is proposed based on the modified CSM after being validated with results obtained from laboratory test and FEA. The proposed design equation can provide accurate predictions of flexural capacities for aluminum alloy RHSs and SHSs with circular through-openings.

키워드

과제정보

The authors are grateful for the financial support from National Natural Science Foundation of China (Grant No. 52178131), Shenzhen Science and Technology Program (Grant No. GXWD20201230155427003-20200804174353001).

참고문헌

  1. ABAQUS (2013), User's Manual 1-3 Version 6.13. USA.
  2. ABAQUS (2014), User's Manual-Version 6.14-2. ABAQUS Inc., USA.
  3. Afshan, S. and Gardner, L. (2013), "The continuous strength method for structural stainless steel design", Thin-Walled Struct., 68(4), 42-49. https://doi.org/10.1016/j.tws.2013.02.011.
  4. Aluminum Design Manual (AA) (2015), Washington, D.C., USA: The Aluminum Association.
  5. Al-Furjan, M.S.H., Habibi, M., Ghabussi, A., Safarpour, H., Safapour, M. and Tounsi, A. (2021), "Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory", Eng. Struct., 228, 111496. https://doi.org/10.1016/j.engstruct.2020.111496.
  6. Australian/New Zealand Standard (AS/NZS) (1997a), Aluminum Structures Part 1: Limit State Design. AS/NZS 1664.1, Sydney, Australia.
  7. Australian/New Zealand Standard (AS/NZS) (1997b), Aluminum Structures Part 2: allowable stress design. AS/NZS 1664.2: 1997, Sydney, Australia.
  8. Castaldo, P., Nastri, E. and Piluso, V. (2017a), "Ultimate behavior of RHS temper T6 aluminum alloy beams subjected to nonuniform bending: parametric analysis", Thin-Walled Struct., 115, 129-141. https://doi.org/10.1016/j.tws.2017.02.006.
  9. Castaldo, P., Nastri, E. and Piluso, V. (2017b), "FEM simulations and rotation capacity evaluation for RHS temper T4 aluminum alloy beams", Compos. Part B: Eng., 115, 124-137. https://doi.org/10.1016/j.compositesb.2016.10.026.
  10. Chen, B., Roy, K., Uzzaman, A. and Lim, J.B.P. (2020), "Moment capacity of cold-formed channel beams with edge-stiffened web holes, un-stiffened web holes and plain webs", Thin-Walled Struct., 157,107070. https://doi.org/10.1016/j.tws.2020.107070.
  11. Chen, B., Roy, K., Fang, Z., Uzzaman, A., Raftery, G. and Lim, J.B.P. (2021), "Moment capacity of back-to-back cold-formed steel channels with edge-stiffened holes, un-stiffened holes, and plain webs", Eng. Struct., 235, 112042. https://doi.org/10.1016/j.engstruct.2021.112042.
  12. Chen, B., Roy, K., Fang, Z., Uzzaman, A., Pham, C.H., Raftery, G. and Lim, J.B.P. (2022), "Shear capacity of cold-formed steel channels with edge-stiffened web holes, un-stiffened web holes, and plain webs", J. Struct. Eng., 148(2), 04021268. 10.1061/(ASCE)ST.1943-541X.0003250.
  13. Chinese Code (2007), Code for Design of Aluminum Structures. GB 50429-2007, Beijing, China (in Chinese).
  14. Eurocode 9 (EC9) (2007), Design of Aluminium Structures-Part 1-1: General Structural Rules, European Committee for Standardization, EN 1999-1-1, CEN, Brussels, Belgium.
  15. Fang, Z., Roy, K., Chen, B., Xie, Z. and Lim, J.B.P. (2022a), "Local and distortional buckling behaviour of aluminium alloy back-to-back channels with web holes under axial compression". J. Build. Eng., 47, 103837. https://doi.org/10.1016/j.jobe.2021.103837.
  16. Fang, Z., Roy, K., Chen, B., Xie, Z., Ingham, J. and Lim, J.B.P. (2022b), "Effect of the web hole size on the axial capacity of back-to-back aluminium alloy channel section columns", Eng. Struct., 260, 114238. https://doi.org/10.1016/j.engstruct.2022.114238.
  17. Feng, R., Sun, W., Shen, CD. and Zhu, J.H. (2017), "Experimental investigation of aluminum square and rectangular beams with circular perforations", Eng. Struct., 151, 613-632. https://doi.org/10.1016/j.engstruct.2017.08.053.
  18. Feng, R., Shen, C.D. and Lin, J.W. (2019a), "Finite-element analysis and design of aluminum alloy CHSs with circular-through-holes in bending", Thin-Walled Struct., 144, 106289. https://doi.org/10.1016/j.tws.2019.106289.
  19. Feng, R. and Liu, J.R. (2019b), "Numerical investigation and design of perforated aluminum alloy SHS and RHS columns", Eng. Struct., 199, 109591. https://doi.org/10.1016/j.engstruct.2019.109591.
  20. Feng, R., Chen, Z.M., Shen, C.D, Roy, K., Chen, B. and Lim, J.B.P. (2020), "Flexural capacity of perforated aluminum CHS tubes-an experimental study", Struct., 25, 463-480. https://doi.org/10.1016/j.istruc.2020.03.025.
  21. Gardner, L. (2008), "The continuous strength method", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 161(3), 127-133. https://doi.org/10.1680/stbu.2008.161.3.127.
  22. Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A, Benrahou K.H. and Tounsi, A. (2021), "Al-Zahrani, M.M., Mohamoud, S.R. Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position" Steel Compos. Struct., 39(1), 51-64. http://dx.doi.org/10.12989/scs.2021.39.1.051.
  23. Hirane, H., Belarbi, M.O., Houari, M.S.A. and Tounsi, A. (2021), "On the layerwise finite element formulation for static and free vibraton analysis of functionally graded sandwich plates", Eng. Comput., 3(3), https://doi.org/10.1007/s00366-020-01250-1.
  24. Irene, C.S., Evangelos, E. and Johan, M. (2016), "Local buckling of aluminum and steel plates with multiple holes", Thin-Walled Struct., 99, 132-141. https://doi.org/10.1016/j.tws.2015.11.009.
  25. Moen, L.A., Hopperstad, O.S. and Langseth, M. (1999a), "Rotational capacity of aluminum alloy beams under moment gradient. I: experiments", J. Struct. Eng., 125(8), 910-920. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:8(910).
  26. Moen, L.A., Hopperstad, O.S. and Langseth, M. (1999b), "Rotational capacity of aluminum alloy beams under moment gradient. II: Numerical Simulations", J. Struct. Eng., 125(8), 921-929. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:8(921).
  27. Mohammadimehr, S.A.M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT eletro-magneto-elastic bending buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. http://dx.doi.org/10.12989/sem.2019.71.5.485.
  28. North American Specification (NAS) (2017), North American Specification for the Design of Cold-Formed Steel Structural Members. Washington, D.C., USA: American Iron and Steel Institute.
  29. North American Specification (NAS) (2012), North American Specification for the Design of Cold-Formed Steel Structural Members. Washington, D.C., USA: American Iron and Steel Institute.
  30. Schafer, B.W. and Pekoz, T. (1998), "Direct strength prediction of cold-formed steel members using numerical elastic buckling solutions", Proceedings of the 14th International Specialty Conference on Cold-Formed Steel Structures, University of Missouri-Rolla, USA, 69-76.
  31. Su, M.N., Young, B. and Gardner, L. (2014a), "Deformationbased design of aluminum alloy beams", Eng. Struct., 80, 339-349. https://doi.org/10.1016/j.engstruct.2014.08.034.
  32. Su, M.N., Young, B. and Gardner, L. (2014b), "Testing and design of aluminum alloy cross-sections in compression", J. Struct. Eng., 140(9), 04014047. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000972.
  33. Su, M.N., Young, B. and Gardner, L. (2016), "Flexural response of aluminum alloy SHS and RHS with internal stiffeners", Eng. Struct., 121, 170-180. https://doi.org/10.1016/j.engstruct.2016.04.021.
  34. Wang, Y.Q, Wang, Z.X. and Yin, F.X. (2016), "Experimental study and finite element analysis on the local buckling behavior of aluminum alloy beams under concentrated loads", Thin-Walled Struct., 105, 44-56. https://doi.org/10.1016/j.tws.2016.04.003.
  35. Zhu, J.H. and Young, B. (2009), "Design of aluminum flexural members using direct strength method" J. Struct. Eng., 135(5), 558-566. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000004.
  36. Zhou, F. and Young, B., (2019), "Combined bending and web crippling of aluminum SHS members" Steel. Compos. Struct., 31(2), 173-185. http://dx.doi.org/10.12989/scs.2019.31.2.173.