Acknowledgement
The authors are grateful for the financial support from National Natural Science Foundation of China (Grant No. 52178131), Shenzhen Science and Technology Program (Grant No. GXWD20201230155427003-20200804174353001).
References
- ABAQUS (2013), User's Manual 1-3 Version 6.13. USA.
- ABAQUS (2014), User's Manual-Version 6.14-2. ABAQUS Inc., USA.
- Afshan, S. and Gardner, L. (2013), "The continuous strength method for structural stainless steel design", Thin-Walled Struct., 68(4), 42-49. https://doi.org/10.1016/j.tws.2013.02.011.
- Aluminum Design Manual (AA) (2015), Washington, D.C., USA: The Aluminum Association.
- Al-Furjan, M.S.H., Habibi, M., Ghabussi, A., Safarpour, H., Safapour, M. and Tounsi, A. (2021), "Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory", Eng. Struct., 228, 111496. https://doi.org/10.1016/j.engstruct.2020.111496.
- Australian/New Zealand Standard (AS/NZS) (1997a), Aluminum Structures Part 1: Limit State Design. AS/NZS 1664.1, Sydney, Australia.
- Australian/New Zealand Standard (AS/NZS) (1997b), Aluminum Structures Part 2: allowable stress design. AS/NZS 1664.2: 1997, Sydney, Australia.
- Castaldo, P., Nastri, E. and Piluso, V. (2017a), "Ultimate behavior of RHS temper T6 aluminum alloy beams subjected to nonuniform bending: parametric analysis", Thin-Walled Struct., 115, 129-141. https://doi.org/10.1016/j.tws.2017.02.006.
- Castaldo, P., Nastri, E. and Piluso, V. (2017b), "FEM simulations and rotation capacity evaluation for RHS temper T4 aluminum alloy beams", Compos. Part B: Eng., 115, 124-137. https://doi.org/10.1016/j.compositesb.2016.10.026.
- Chen, B., Roy, K., Uzzaman, A. and Lim, J.B.P. (2020), "Moment capacity of cold-formed channel beams with edge-stiffened web holes, un-stiffened web holes and plain webs", Thin-Walled Struct., 157,107070. https://doi.org/10.1016/j.tws.2020.107070.
- Chen, B., Roy, K., Fang, Z., Uzzaman, A., Raftery, G. and Lim, J.B.P. (2021), "Moment capacity of back-to-back cold-formed steel channels with edge-stiffened holes, un-stiffened holes, and plain webs", Eng. Struct., 235, 112042. https://doi.org/10.1016/j.engstruct.2021.112042.
- Chen, B., Roy, K., Fang, Z., Uzzaman, A., Pham, C.H., Raftery, G. and Lim, J.B.P. (2022), "Shear capacity of cold-formed steel channels with edge-stiffened web holes, un-stiffened web holes, and plain webs", J. Struct. Eng., 148(2), 04021268. 10.1061/(ASCE)ST.1943-541X.0003250.
- Chinese Code (2007), Code for Design of Aluminum Structures. GB 50429-2007, Beijing, China (in Chinese).
- Eurocode 9 (EC9) (2007), Design of Aluminium Structures-Part 1-1: General Structural Rules, European Committee for Standardization, EN 1999-1-1, CEN, Brussels, Belgium.
- Fang, Z., Roy, K., Chen, B., Xie, Z. and Lim, J.B.P. (2022a), "Local and distortional buckling behaviour of aluminium alloy back-to-back channels with web holes under axial compression". J. Build. Eng., 47, 103837. https://doi.org/10.1016/j.jobe.2021.103837.
- Fang, Z., Roy, K., Chen, B., Xie, Z., Ingham, J. and Lim, J.B.P. (2022b), "Effect of the web hole size on the axial capacity of back-to-back aluminium alloy channel section columns", Eng. Struct., 260, 114238. https://doi.org/10.1016/j.engstruct.2022.114238.
- Feng, R., Sun, W., Shen, CD. and Zhu, J.H. (2017), "Experimental investigation of aluminum square and rectangular beams with circular perforations", Eng. Struct., 151, 613-632. https://doi.org/10.1016/j.engstruct.2017.08.053.
- Feng, R., Shen, C.D. and Lin, J.W. (2019a), "Finite-element analysis and design of aluminum alloy CHSs with circular-through-holes in bending", Thin-Walled Struct., 144, 106289. https://doi.org/10.1016/j.tws.2019.106289.
- Feng, R. and Liu, J.R. (2019b), "Numerical investigation and design of perforated aluminum alloy SHS and RHS columns", Eng. Struct., 199, 109591. https://doi.org/10.1016/j.engstruct.2019.109591.
- Feng, R., Chen, Z.M., Shen, C.D, Roy, K., Chen, B. and Lim, J.B.P. (2020), "Flexural capacity of perforated aluminum CHS tubes-an experimental study", Struct., 25, 463-480. https://doi.org/10.1016/j.istruc.2020.03.025.
- Gardner, L. (2008), "The continuous strength method", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 161(3), 127-133. https://doi.org/10.1680/stbu.2008.161.3.127.
- Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A, Benrahou K.H. and Tounsi, A. (2021), "Al-Zahrani, M.M., Mohamoud, S.R. Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position" Steel Compos. Struct., 39(1), 51-64. http://dx.doi.org/10.12989/scs.2021.39.1.051.
- Hirane, H., Belarbi, M.O., Houari, M.S.A. and Tounsi, A. (2021), "On the layerwise finite element formulation for static and free vibraton analysis of functionally graded sandwich plates", Eng. Comput., 3(3), https://doi.org/10.1007/s00366-020-01250-1.
- Irene, C.S., Evangelos, E. and Johan, M. (2016), "Local buckling of aluminum and steel plates with multiple holes", Thin-Walled Struct., 99, 132-141. https://doi.org/10.1016/j.tws.2015.11.009.
- Moen, L.A., Hopperstad, O.S. and Langseth, M. (1999a), "Rotational capacity of aluminum alloy beams under moment gradient. I: experiments", J. Struct. Eng., 125(8), 910-920. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:8(910).
- Moen, L.A., Hopperstad, O.S. and Langseth, M. (1999b), "Rotational capacity of aluminum alloy beams under moment gradient. II: Numerical Simulations", J. Struct. Eng., 125(8), 921-929. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:8(921).
- Mohammadimehr, S.A.M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT eletro-magneto-elastic bending buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. http://dx.doi.org/10.12989/sem.2019.71.5.485.
- North American Specification (NAS) (2017), North American Specification for the Design of Cold-Formed Steel Structural Members. Washington, D.C., USA: American Iron and Steel Institute.
- North American Specification (NAS) (2012), North American Specification for the Design of Cold-Formed Steel Structural Members. Washington, D.C., USA: American Iron and Steel Institute.
- Schafer, B.W. and Pekoz, T. (1998), "Direct strength prediction of cold-formed steel members using numerical elastic buckling solutions", Proceedings of the 14th International Specialty Conference on Cold-Formed Steel Structures, University of Missouri-Rolla, USA, 69-76.
- Su, M.N., Young, B. and Gardner, L. (2014a), "Deformationbased design of aluminum alloy beams", Eng. Struct., 80, 339-349. https://doi.org/10.1016/j.engstruct.2014.08.034.
- Su, M.N., Young, B. and Gardner, L. (2014b), "Testing and design of aluminum alloy cross-sections in compression", J. Struct. Eng., 140(9), 04014047. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000972.
- Su, M.N., Young, B. and Gardner, L. (2016), "Flexural response of aluminum alloy SHS and RHS with internal stiffeners", Eng. Struct., 121, 170-180. https://doi.org/10.1016/j.engstruct.2016.04.021.
- Wang, Y.Q, Wang, Z.X. and Yin, F.X. (2016), "Experimental study and finite element analysis on the local buckling behavior of aluminum alloy beams under concentrated loads", Thin-Walled Struct., 105, 44-56. https://doi.org/10.1016/j.tws.2016.04.003.
- Zhu, J.H. and Young, B. (2009), "Design of aluminum flexural members using direct strength method" J. Struct. Eng., 135(5), 558-566. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000004.
- Zhou, F. and Young, B., (2019), "Combined bending and web crippling of aluminum SHS members" Steel. Compos. Struct., 31(2), 173-185. http://dx.doi.org/10.12989/scs.2019.31.2.173.